Supporting information

Insight into the effect of electronegativity on $\mathbf{H}_{\mathbf{2}}$ activation for $\mathbf{C O}_{\mathbf{2}}$ hydrogenation: Four transition metal cases from a DFT study
Haipeng Chen, ${ }^{* a}$ Minjian Yang, ${ }^{\text {b }}$ Jinqiang Liu, ${ }^{\text {a }}$ Guojian Lu*c ${ }^{* c}$ and Xun Feng*b
${ }^{\text {a }}$ College of Chemistry and Chemical Engineering, Henan Key Laboratory of FunctionOriented Porous Materials, Luoyang Normal University, Luoyang 471934, China.
${ }^{\mathrm{b}}$ College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China.
${ }^{\text {c }}$ Lianyungang Normal College, Lianyungang 222006, China.

*Corresponding authors:

haipengchen1985@163.com (H.P. Chen)
luguojian813@163.com (G.J. Lu)
fengx@lynu.edu.cn (X. Feng)

Figure S1. Crystal cells of Fe, Ni, Ru and Pt.

Figure S2. Orbital contribution for H_{2} dissociation on $\mathrm{Fe}(111), \mathrm{Ni}(111), \mathrm{Ru}(0001)$ and $\mathrm{Pt}(111)$.

Figure S3. (A) Partial density of states (PDOS) for CO_{2} adsorption on Fe (111), and (B) the corresponding orbital contribution of CO_{2} for overlapping with $\mathrm{Fe} 3 d$ orbital.

Figure S4. Partial density of states (PDOS) for CO_{2} adsorption on $\mathrm{Ru}(0001)$, and (B) the corresponding orbital contribution of CO_{2} for overlapping with $\mathrm{Ru} 4 d$ orbital.

Figure S5. Deformation charge density for free adsorption of the activated CO_{2} molecule on the H -assisted (A) $\mathrm{Fe}(111)$, (B) $\mathrm{Ni}(111)$, (C) $\mathrm{Ru}(0001)$ and (D) $\mathrm{Pt}(111)$.

Table S1

Construction information for $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Ru}$ and Pt bulk metal and supercell after optimization.

Transition metal	Fe	Ni	Ru	Pt
Supercell	$\mathrm{Fe}(111)$	$\mathrm{Ni}(111)$	$\mathrm{Ru}(0001)$	$\mathrm{Pt}(111)$
Supercell size	$(2 \times 2 \times 6)$	$(3 \times 3 \times 4)$	$(3 \times 3 \times 5)$	$(3 \times 3 \times 5)$
Vacuum space	$20 \AA$	$20 \AA$	$20 \AA$	$20 \AA$
Atomic number	24	36	45	45
Lattice parameter	$a=2.8664 \AA$	$a=3.5240 \AA$	$a=2.7058 \AA$	$a=3.9239 \AA$
of bulk metal			$c=4.2816 \AA$	
Lattice parameter	$a=b=8.1074 \AA$	$a=b=7.4755 \AA$	$a=8.1174 \AA$	$a=b=8.3238 \AA$
of supercell	$c=24.1373 \AA$	$c=26.1037 \AA$	$b=8.1174 \AA$	$c=29.0619 \AA$
			$c=28.5632 \AA$	

