Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Ultradeep hydrodesulfurization of fuel over superior NiMoS phases constructed by novel Ni(MoS₄)₂(C₁₃H₃₀N)₂ precursor

Jundong Xu, Chenglong Wen, Shuisen He, Yu Fan^*

State Key Laboratory of Heavy Oil Processing, China University of Petroleum,

Beijing 102249, P.R. China

^{*} Corresponding author. Tel.: +86 10 89734981; fax: +86 10 89734979.

E-mail address: fanyu@cup.edu.cn (Y. Fan)

Item	Value
Density (20 °C) (g·cm ⁻³)	0.856
Sulfur ($\mu g \cdot g^{-1}$)	3640
Kinematic viscosity (20 °C) (mm ² ·s ⁻¹)	5.39
Cetane number	39
Distillation (ASTM D86) (°C)	
IBP	210
10%	249
50%	296
90%	342
FBP	363

Table S1 Properties of FCC diesel.

The typical HRTEM images of s-NiMo/ γ -Al₂O₃-DE and s-NiMo/ γ -Al₂O₃-D are shown in Fig. S1. Most of MoS₂ slabs on s-NiMo/ γ -Al₂O₃-DE (Fig. S1a) have the same length and stacking layer number as those of s-NiMo/ γ -Al₂O₃-D (Fig. S1b). In addition, s-NiMo/ γ -Al₂O₃-DE has almost the same distributions of lengths (Fig. S1c) and stacking layer numbers (Fig. S1d) of the MoS₂ slabs as those of s-NiMo/ γ -Al₂O₃-D D.

Fig. S1. HRTEM images of s-NiMo/γ-Al₂O₃-DE (a), s-NiMo/γ-Al₂O₃-D (b); statistical distributions of the lengths (c) and stacking numbers (d) of MoS₂ slabs on s-NiMo/γ-Al₂O₃-DE and s-NiMo/γ-Al₂O₃-D.

The reaction rate constants (k_{HDS}) and TOF values of s-NiMo/ γ -Al₂O₃-D (prepared using alumina powder as a support) and s-NiMo/ γ -Al₂O₃-DE (prepared using alumina extrude as a support) for 4,6-DMDBT HDS are listed in Table S2. s-NiMo/ γ -Al₂O₃-DE has almost the same k_{HDS} (6.32 × 10⁻⁷ mol g⁻¹ s⁻¹) and TOF value (9.98 × 10⁻⁴ s⁻¹) as those of s-NiMo/ γ -Al₂O₃-D.

Table S2 HDS results for 4,6-DMDBT on s-NiMo/γ-Al₂O₃-D and s-NiMo/γ-Al₂O₃-

Catalyst	k _{HDS} (10 ⁻⁷ molg ⁻¹ s ⁻¹)	TOF×10 ⁴ (s ⁻¹)
s-NiMo/γ-Al ₂ O ₃ -D	6.35	10.01
s-NiMo/γ-Al ₂ O ₃ -DE	6.32	9.98

D	
11	H .
D.	Ŀ.