One-Pot Oxidative Cleavage of Cyclic Olefins for the Green Synthesis of

Dicarboxylic Acids in Pickering Emulsions in the Presence of Phosphate

Additives

Bingyu Yang,^{a,b} Grégory Douyère,^a Loïc Leclercq,^a Véronique Nardello-Rataj,^{a*} and Marc Pera-Titus^{b*}

^o Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France

^b Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS – Solvay, 3966 Jin Du Road, Xin Zhuang Ind. Zone, 201108 Shanghai, China

^c SOLVAY-Advanced Organic Chemistry & Molecule Design Laboratory, 85 Avenue des Frères Perret, 69192 Saint Fons, France

*Corresponding author: veronique.rataj-nardello@univ-lille.fr, marc.pera-titus-ext@solvay.com

Experimental Section

Chemicals

Aerosil^{*}200 was a generous gift from Evonik Industries AG (Germany). Trimethoxy(octadecyl)silane (90%), Sodium hydrogenophosphate (98+%) and sodium dihydrogenophosphate (99%) were purchased from Aldrich (USA). (3-mercapto-propyl)trimethoxysilane (95%) was purchased from ABCR (Germany). Amberlite IRA-400 (Cl⁻) ion exchange resin and dodecyl trimethylammonium bromide (99%) were purchased from Alfa Aesar (USA). Tungstophosphoric acid, phosphoric acid and ammonium phosphate dibasic (>99%) were supplied by Acros (USA). Cyclohexene and cyclooctene (98%) were purchased from TCI (Japan). Hydrogen peroxide (50%) was procured from VWR International (France). DMSO-d₆ (99.8%) and CDCl₃ (99.8%) were purchased from Eurisotop (France) and were used for NMR analysis. All other chemical were purchased from Sigma-Aldrich and used without further purification. Millipore water (18.2 M \mathbb{Z} /cm; Simplicity 185) was used for preparing the particles and emulsions.

Synthesis of functionalized C12-POM NPs, [C12][H2PO4] and [C12]2[HPO4]

The protocol for preparing C_{12} -POM NPs was adapted from a previous study.¹ Briefly, dodecyltrimethylammonium bromide $[C_{12}][Br]$ (19.5 mmol) was dissolved in water (100 mL). An aqueous solution of $[C_{12}][Br]$ was eluted on a hydroxide ion exchange resin to obtain an aqueous solution of $[C_{12}][OH]$. An aqueous solution of $H_3[PW_{12}O_{40}]$ (~6.5 mmol, 10⁻⁴ M) was added dropwise (3 mL/min) to the aqueous $[C_{12}][OH]$ solution (3 × 10⁻⁴ M) until pH 7 at 25 °C under dry Ar and vigorous magnetic stirring (1,500 rpm). The colourless precipitate of tri(dodecyltrimethylammonium) phosphotungstate formed within a few minutes was washed with water and lyophilized (Yield: 99%).

The protocols for preparing $[C_{12}][H_2PO_4]$ and $[C_{12}]_2[HPO_4]$ are the same than for C_{12} -POM except that the aqueous solution of $H_3[PW_{12}O_{40}]$ is replaced by an aqueous solution of $H_3[PO_4]$. Molar ratios of 1:1 and 2:1 are used to obtain dodecyltrimethylammonium dihydrogen phosphate and di(dodecyltrimethylammonium) hydrogen phosphate, respectively. White precipitate are obtained, washed with water and lyophilized (Yield : 99% and 98% respectively).

Synthesis of functionalized silica NPs (C₁₈/C₃SO₃H)

The protocol for preparing C_{18}/C_3SO_3H NPs was adapted from a previous study.² Briefly, trimethoxy(octadecyl)silane (16 mmol) and (3-mercaptopropyl)trimethoxysilane (4 mmol) were hydrolysed in a 100-mL water/ethanol (1:1 v/v) solution (pH 9.6) at room temperature overnight. The mixture was added dropwise to a suspension of Aerosil[®]200 (1 g / 50 mL water / 50 mL ethanol, pH 9.6), and was stirred for 24 h under reflux. After grafting, the suspension was cooled down and the white solid was filtered, washed with ethanol (3 x 30 mL) and acetone (30 mL), and dried overnight at 80 °C. The dried powder was grinded and the thiol groups were oxidized using 60-mL of an aqueous solution of H₂O₂ (50 wt%). Acetonitrile was added dropwise until a homogeneous suspension was

obtained (3 to 4 mL). The reaction mixture was stirred at 40 °C for 24 h. After the synthesis, the powder was filtered, washed with ethanol and dried (Yield: 98%).

Characterization of NPs

Thermogravimetric analysis (TGA) was carried out on a Q50 (TA Instrument, US) by heating the samples from room temperature to 900 °C at a rate of 10 °C/min under air atmosphere (100 mL(STP)/ min). The zeta potential of the samples was measured on a Zetasizer (Nano ZS ZEN 3600, Malvern, UK) equipped with a 4.0 mW He-Ne laser light source with a wavelength λ = 632.8 nm. The measurements were performed by dispersing the nanoparticles in water at 25 °C in the presence of the additives at constant ionic strength (1.0 mS/cm). The acidity of the C₁₈/C₃SO₃H NPs was measured using aliquots, where 50 mg of the NPs were stirred with NaCl (5.85 g / 20 mL ethanol / 30 mL water) at room temperature for 24 h. Then, the NPs were filtered off and the resulting solution was titrated with a 0.025 M NaOH solution using a pH-meter (Meterlab PHM250 Ion Analyzer, Radiometer Analytical).

Preparation and characterization of emulsions

To generate Pickering emulsions, water (2.25 mL) and toluene (0.75 mL) were weighed before adding C_{12} -POM and/or C_{18}/C_3SO_3H NPs (50 mg each, 3.6 wt.%). The emulsification was performed using an Ultraturrax T10 basic at 20 °C and 11,500 rpm for a given time (IKA Works, Inc., Germany) in a 5-mL sealed container. To destabilize the emulsions, these were centrifuged at 4,000 rpm for 20 min using a Sigma 2-16PK apparatus.

The type of emulsion was inferred by observing the evolution of a drop of each emulsion when a volume of either oil or water was added (dilution test). Microphotographs were taken using a light microscope Standard 25 ICS (Carl Zeiss AG, Germany) coupled with an Axiocam ERc-5s camera (Carl Zeiss AG, Germany). The emulsions were diluted with the continuous phase before observation and several photographs were taken in different locations to acquire a general view of the droplets. The images were analysed with ImageJ software (National Institutes of Health, USA). The distribution function (log-normal, defined by eq 1) of droplet diameters was obtained by treatment of at least 250 individual droplets using OriginPro 8[®] software

$$y = \frac{A}{\sqrt{2\pi\omega d}} \exp \frac{-\left(\ln \frac{d}{d_m}\right)^2}{2\omega^2}$$
(1)

where y is the density function, \mathbb{Z} is the polydispersity (the peak will be approximately symmetric when \mathbb{Z} is small), d_m is the median droplet diameter (d_m refers to the peak centre when the log-normal distribution is approximately symmetric), and A is the amplitude corresponding to the area under the integrated curve.

The emulsion stability was examined by the evolution in the emulsion volume fraction as a function of storage time at 60 °C to simulate the reaction conditions.

Finally, the pH of the emulsions was measured in the presence of the additives after stabilization using a pH-meter (Meterlab PHM250 Ion Analyzer, Radiometer Analytical). The pH was measured by adding 1 wt% emulsion in deionized water.

Catalytic tests

In a typical catalytic test, toluene (0.75 mL) containing the given cycloalkene (2 mol/L) and water (2.25 mL) containing 1.2 equiv H_2O_2 (2.4 mmol, 50%) was added to a 5-mL flask and placed in a thermoregulated Lauda RC6 water bath, followed by C_{12} -POM and/or C_{18}/C_3SO_3H NPs (50 mg each). The system was pre-emulsified using an Ultra-Turrax^{*} (IKA T 25) at 11,500 rpm for 1 min. The reactor was sealed, heated at 65 °C for 4 h under stirring (500 rpm) to epoxidize the double bond. Then, another 3.5 equiv. H_2O_2 (7 mmol, 50%) was added to the system, this was re-emulsified and the reaction was pursued at 80 °C for a given time (12 h for cyclohexene and 24 h for cyclooctene) under stirring (500 rpm). The composition of the organic and aqueous phases was analysed along the reaction by ¹H NMR after decantation. CDCl₃ and deuterated DMSO were used as solvents for each phase, respectively, whereas *n*-dodecane and *n*-dodecanol were used as internal standards. All the catalytic tests and analyses were carried out at least three times to ensure repeatability.

References

- a) L. Leclercq, A. Mouret, A. Proust, V. Schmitt, P. Bauduin, J-M. Aubry and V. Nardello-Rataj, *Chem. Eur. J.* **2012**, *18*, 14352; b) I. F. Teixeira, A. A. S. Oliveira, T. Christofani, F. C. C. Moura, *J. Mater. Chem. A* **2013**, *1*, 10203; c) J. Zhang, A. Wang, Y. Wang, H. Wang, J. Gui, *Chem. Eng. J.* **2014**, *245*, 65; d) Y. Leng, J. Wu, P. Jiang, J. Wang, *Catal. Sci. Technol.* **2014**, *4*, 1293; e) W. Q. Yizhan, W. W. Li, L. Wu, *Chem. Eur. J.* **2010**, *16*, 1068; f) Z. Zheng, J. Wang, H. Chen, L. Feng, R. Jing, M. Lu, B. Hu, J. Ji, *ChemCatChem.* **2014**, *6*, 1626.
- 2. Z-Y. Fan, A. Tay, M. Pera-Titus, W.-J. Zhou, S. Benhabbari, X. Feng, G. Malcouronne, L. Bonneviot, F. De Campo, L. Wang and J-M. Clacens, *J. Colloid Interface Sci.* **2014**, *427*, 80.

Substrate	Conversion (%)	Selectivity (%)		
		Epoxide	Diol	Diacid
\bigcirc	>99	1.0	20	72
\bigcirc	82	6.1	8.5	77
	65 (99)	24 (20)	43 (8)	37 (72)
	>99	2.0	25	61
\bigcirc	84	1.2	31	67

Table 1. Catalytic results for the oxidative cleavage of different cyclic alkenes using mixed $C_{12}POM + C_{18}/C_3SO_3H NPs^1$

¹ Reaction conditions: 0.75 mL toluene (2 mol/L cyclic alkene), 2.25 mL H₂O (1.2 equiv. H₂O₂), 50 mg C_{12} -POM, 50 mg C_{18}/C_3SO_3H , 2 equiv. Na₂HPO₄ with respect to C_{12} -POM, 60 °C, 500 rpm 4 h, followed by 3.5 equiv. H₂O₂, 80°C, 500 rpm, 12 h. ² In parentheses, reaction conducted for 24 h.