Supporting Information

Platinum-Palladium Alloy Nanotetrahedra with Tuneable Lattice-Strain for Enhanced Intrinsic Activity

Ruifang Miao^{a#}, Fangfang Chang^{a#,} *, Mengyun Ren^a, Xianhong He^a, Lin Yang^a*, Xiaolei Wang^b and Zhengyu Bai^a*

^a Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China. Email: changfangfang@htu.edu.cn; yanglin@htu.edu.cn;baizhengyu@htu.edu.cn ^b Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.

Fig. S1 TEM images of the nanotetrahedra samples ((A) Pt₁₆Pd₈₄/C, (B) Pt₃₅Pd₆₅/C, (C) Pt₈₃Pd₁₇/C and (D) Pt NPs/C).

Fig. S2 HR-TEM images of the nanotetrahedra samples ((A) Pt₁₆Pd₈₄/C, (B) Pt₃₅Pd₆₅/C, (C) Pt₈₃Pd₁₇/C and (D) Pt NPs/C).

		Specific			
Catalyst	Electrolyte	Mass Activity (A/mg _{Pt} -1)	Activity(mA/cm ²)	Reference	
Pt ₇₅ Pd ₂₅ /rGO-CNTs	0.5 M H ₂ SO ₄ +1 M CH ₃ OH	1.01	5.4	1	
Pt ₆₀ Pd ₄₀ -GNP	0.5 M H ₂ SO ₄ +1 M CH ₃ OH	0.47	0.263	2	
PtPdCu-TiN	0.5MH ₂ SO ₄ +0.5M CH ₃ OH	0.37	0.48	3	
PtPd-TiN	0.5 M H ₂ SO ₄ +0.5 CH ₃ OH	0.2	0.27	4	
Pt_3Pd_1 -CeO ₂ /C	$0.5 \text{ M} \text{ HClO}_4 + 1 \text{ MCH}_3 \text{OH}$	0.853	2.05	5	
Pt ₆₂ Pd ₃₈ /C	0.1M HClO ₄ +0.5 MCH ₃ OH	1.31	0.57	This work	

Fig. S4 CV curves of commercial Pt/C in 0.1 M HClO₄ + 0.5 M C₂H₅OH solution purged with N₂ at a scan rate of 50 mV s⁻¹

Catalyst	Electrolyte	Mass activity (A/mg_{Pt}^{-1})	Specific activity(mA/cm ²)	Reference
$Pt_{73}Pd_{27}/C$	$0.5 \text{ M H}_2\text{SO}_4\text{+}1 \text{ M C}_2\text{H}_5\text{OH}$	0.482	0.54	6
PtPd NPs	0.5 MH ₂ SO ₄ +0.5MC ₂ H ₂ OH	0.49	1.12	7
				-
$Pt_{34}Pd_{33}Cu_{33}$	$0.1M \ \text{HClO}_4\text{+}0.5\text{MC}_2\text{H}_5\text{OH}$	0.19	1.13	8
		1.00	2.24	0
Pt ₁ Pd ₅ NC/RGO	$0.5 \text{ IM } \text{H}_2\text{SO}_4 + 0.5 \text{ IMC}_2\text{H}_5\text{OH}$	1.08	2.31	9
Pt-Pd@TDI/rGO	0.1MHClO4 +0.5MC2H5OH	1.5	1.20	10
Pt ₆₂ Pd ₃₈ /C	$0.1M$ HClO ₄ + $0.5MC_2H_5OH$	1.2	0.87	This work

Fig. S5 TEM images of $Pt_{62}Pd_{38}/C$ alloy NTDs after long-term durability

Table S2 Comparison of MOR activities of various catalysts

	Cluster	E _{binding} (eV)	d-band center (eV)			
Pt ₁₀		1.461	-1.125			
Pt_8Pd_2	2	1.464	-1.048			
Pt_6Pd_4	4	1.466	-0.856			
Pt ₃ Pd ₇		1.465	-0.801			
Pt_1Pd_9		1.463	-0.365			
Pd ₁₀		1.462	-0.253			

Table S3. Structure, binding energy ($E_{binding}$) and d-band center for Pt_nPd_{10-n} clusters

Reference

1 A. B. Yousaf, M. Imran, S. J. Zaidi and P. Kasak, J. Electroanal. Chem., 2019, 832, 343-352.

2 G. L. Zhang, C. D. Huang, R. J. Qin, Z. C. Shao, D. An, W. Zhang and Y. X. Wang, J. Mater. Chem. A. 2015, **3**, 5204-5211.

3 R. Chang, L. J. Zheng, C. W. Wang, D. C. Yang, G. X. Zhang and S. H. Sun, Appl. Catal. B: Environ., 2017, 211, 205-211.

4 M. X. Gong, X. Jiang, T. Y. Xue, T. Y. Shen, L. Xu, D. M. Sun and Y. W. Tang, Catal. Sci. Technol., 2013, 00, 1-3.

- 5 A. B. Yousaf, M. Imran, N. Uwitonze, A. Zeb, S. J. Zaidi, T. M. Ansari, G. Yasmeen and S. Manzoor, J. Phys. Chem. C. 2017, 121, 2069–2079.
- 6 Q. Zhang, T. Chen, R. Y. Jiang and F. X. Jiang, RSC Adv., 2020, 10, 10134-10143.
- 7 P. T. Qiu, S. M. Lian, G. Yang and S. C. Yang, *Nano Rev.*, 2017, **10**, 1064-77.

8 J. Lan, K. Wang, Q. Yuan and X. Wang, *Mater. Chem. Front.*, 2017, 1, 1217-22.

- 9 Y. Y. Zheng, J. H. Qiao, J. H. Yuan, J. F. Shen, A. J. Wang and S. T. Huang, Inter. J. Hydrogen Energ., 2018, 43, 4902-4911.
- 10 J. N. Tiwari, W. G. Lee, S. Sultan, M. Yousuf, A. M. Harzandi, V. Vij and K. S. Kim, ACS Nano., 2017, 11, 7729-7735.