Supporting Information

Roles of Ga³⁺ promoter for direct synthesis of iso-butanol via syngas over K-ZnO/ZnCr₂O₄ catalyst

Tao Zhang^a, Chunyang Zeng^b, Yingquan Wu^a, Nana Gong^{a,c}, Jiaqian

Yang^{a,c}, Guohui Yang^a, Noritatsu Tsubaki^{d*}, Yisheng Tan^{a*}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of

Science, Taiyuan, Shanxi 030001, China

^b China Petroleum Chemical Industry Federation, Beijing 100723, China

^c University of Chinese Academy of Science, Beijing 100049, China

^d Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190,Toyama,930-8555, Japan

1. Computational methods

The periodic DFT calculation was performed by using Vienna ab initio simulation Package (VASP) ¹⁻⁴. The generalized gradient approximation with the Perdew-Burke-Ernzerh functional was used to deal with the electron exchange-correlation energy. The projector-augmented wave method was used to describe the interactions between electrons and atomic cores, the cutoff energy for the plane-wave basis set was 450 eV. Van der Waals interaction was taken into consideration by DFT-D3 method. The geometry optimizations was performed by conjugate gradient algorithm (IBRION=2) and quasi-Newton algorithm (IBRION=1) with the convergence criterion for energy and force were less than 10^{-5} eV and 0.02 eV/Å, respectively. A $1 \times 1 \times 1$ k-point grid method was applied to sample the Brillouin zone. The transition state seeking for the elementary reactions of CO activation was studied by climbing image nudged elastic band (CI-NEB) method⁵. The obtained saddle point was confirmed by frequency analysis to have a single imaginary

frequency. All the surface atoms were fixed except for the relaxation of the adsorbed molecule or groups such as CO, C, H, CHO during CI-NEB calculations based on our computational resources.

The adsorption energies of related adsorbed species such as CO, CHO, H₂O and CO₂ were computed by the formula: $E_{ads} = E_{x/slab} - (E_x + E_{slab})$, where $E_{x/slab}$, E_{slab} and E_x are the total energies of species absorbed on the slab, the slab and the isolated gas species, respectively. The reaction energy ΔE and activation energy E_a are evaluated through the following equation (2) and (3):

$$\Delta H = E_{fs} - E_{is} \qquad (2)$$

$$E_a = E_{ts} - E_{is} \qquad (3)$$

where E_{fs} , E_{is} and E_{ts} are the energies of products, reactants and transition state, respectively.

2. Models

2.1 The possible locations of Ga³⁺ in ZnCr₂O₄

The possible locations of Ga³⁺ in the doped K-ZnO/ZnCr₂O₄ catalyst were confirmed by DFT calculation. The flowing possible locations of Ga³⁺ were fall in our consideration, that is (1) Zn²⁺ located at ZnO was replaced by Ga³⁺, demoted as Zn_{1/2}Ga_{1/2}O, (ZGO); (2) Zn²⁺ located at the tetrahedron site of ZnCr₂O₄ was replaced by Ga³⁺, denoted as ZnCr_{16/7}Ga_{1/7}O_{34/7}, (ZG); (3) Cr³⁺ located at the octahedral site of ZnCr₂O₄ was replaced by Ga³⁺, denoted as ZnCr_{16/7}Ga_{1/7}O_{34/7}, (ZG); (3) Cr³⁺ located at the octahedral site of ZnCr₂O₄ was replaced by Ga³⁺, denoted as ZnCr_{15/8}Ga_{1/8}O₄, (CG); (4) Ga³⁺ located at the vacancies in the bulk of ZnCr₂O₄. In addition, the possibility of ZGO, ZG, CG, and ZnGa₂O₄ formation through ZnO, γ - Ga₂O₃, Cr₂O₃, and ZnCr₂O₄ were also calculated to explore the possible origins of ZnGa₂O₄, or Ga adopted ZnCr spinel. The detailed reactions that fall our consideration are listed in Table s1.

The binding energy E_B is calculated by the following expression to test the phase stability of Ga adopted ZnCr oxide: a larger E_B indicates that the structure is most likely to exist and be stable, that is :

 $E_B = \sum E_{atom} n_{atom} - E_t$

where E_t is the total energy of the constructed crystal lattice, E_{atom} is the total energy of isolated atom (Zn, Cr, Ga, and O, respectively) in vacuum, n_{atom} is the number of the atom that composed the crystal^{6, 7}. The formation energies were calculated based on the most stable oxides phases as references states according to David A. Andersson et al 's strategy ⁸.

2.2 Adsorption of Ga on(311), (310), and (202) surfaces of $ZnCr_2O_4$

The (311), (310) and (202) surfaces of $ZnCr_2O_4$ were obtained by cutting the respective surfaces of the optimized $ZnCr_2O_4$ spinel. Among all these surfaces, tricoordinated oxygen atoms were chosen as the preferred adsorption sites, other coordination unsaturated atoms such as Zn and Cr on the surface are fall out of our investigation owing to the fact that the electronegativity of these two atoms are much smaller than atom O. K-point grid method for the three surfaces are $3 \times 4 \times 1$ for (311) surface, $3 \times 2 \times 1$ for (310) surface and $2 \times 2 \times 1$ for (202) surface respectively, which was applied to sample the Brillouin zone.

3. Location of Ga atom in ZnCr₂O₄ spinel

The possible locations of Ga atom in the doped $ZnCr_2O_4$ proposed above were verified by DFT calculation. When Ga located on the vacancies of $ZnCr_2O_4$ crystal were investigated, the disorder of the spinel was observed obviously, implying that Ga could not exist in the locations of vacancies of ZnCr spinel. So the possible location of ZG and CG are our main consideration. The obtained structures and energies of CG and ZG are listed in Fig.s1 and Table s1. It is obviously show that when the configuration Zn^{2+} located in tetrahedron site, a much lower energy was obtained (-438.527 eV vs.-334.680 eV), indicating that Ga³⁺ located in the tetrahedron site is the most possible configurations of Ga³⁺ doped ZnCr spinel.

Based on the above analysis, $ZnCr_2O_4(111)$, ZG(111), and $ZnGa_2O_4(111)$ surfaces were constructed to mimic the surface structure of ZnCr spinel, Ga adopted ZnCr spinel and ZnGa spinel catalysts to further study the absorption and activation of syngas. Configurations of the two model catalyst were listed in Fig. S2. The adsorption of CO, CHO and COH were evaluated with the optimized structure and adsorption energies listed in Fig. S3. As can been see in Fig.S3, on both catalyst surface CO prefers to absorbed on Cr site with atom C, with the adsorption energy for on the two catalyst surface are 1.20 eV and 2.70 eV respectively, indicating the replacement of Zn^{2+} by Ga^{3+} is advantageous to CO adsorption. In addition, the analysis to the most stable configurations of CO show that when Zn was replaced by Ga, C=O bond was enlarged from 1.16 Å to 1.17 Å, the distance between C and surface Cr is shorted from 1.98 Å to 1.91 Å. The stretching vibration of C-O bond decreased from 2024 cm⁻¹ in the gas phase to 1979.22 cm⁻¹ on $ZnCr_2O_4$ (111) surface and 1903.68 cm⁻¹ on Zn-Ga (111) surface, which further verify the enhanced adsorption of CO by Ga addition. Formyl group formation through CO hydrogenation was also investigated by CI-NEB analysis. The results show (Fig.S4) that with Ga addition, the reaction energy was reduced from 0.24 eV to -1.05 eV, the activation energy of the two reactions reduced from 0.96 eV to 0.78 eV, indicating CHO formation becomes more preferable with Ga addition.

Fig. s1. Isotherm linear plot (left) and BJH desorption of dV/dD pore volume(right) for K-GaxZnCr samples. (x=0.0, 0.55, 1.10, 1.64 and 2.18)

Fig.s2 HR-TEM images of K-Ga₀ZnCr catalyst.

Fig.s3 HR-TEM images of K-Ga_{1.10}ZnCr catalyst.

Fig.s5. Top view and side view of the configurations of Ga adsorbed on the (311), (310) and (202) surfaces of ZnCr₂O₄.

Fig. s6. Indirect band gap E_g calculated from ultraviolet-visible diffuse reflectance spectral for K-Ga_xZnCr catalysts.

Fig. s7. The XPS spectral of Cr_{2p} for K-Ga_xZnCr samples. (x=0.0, 0.55, 1.10, 1.64 and 2.18)

Fig. s8. The XPS spectral of Zn_{2P} for K-Ga_xZnCr samples. (x=0.0, 0.55, 1.10, 1.64 and 2.18)

Fig. s9. The XPS spectrals of Ga2p for K-ZnGa₂O₄(A), Ga₂O₃(C) and Ga3d for K-ZnGa₂O₄ (B), Ga₂O₃ (D). Ga₂O₃ (99.99%) was perched from Shanghai Aladdin Biochemicl Technology Co.Ltd

Fig. s10. The XPS spectral of O1s for K-Ga_xZnCr samples. (x=0.0, 0.55, 1.10, 1.64 and 2.18)

Fig. s13. DRIFT spectral of CO absorption on K-ZnGa₂O₄ and K-Ga_xZnCr samples and 400 °C. (x=0.0, 0.55, 1.10, 1.64 and 2.18)

Fig. s14. The most stable adsorption configurations of H_2 on $ZnCr_2O_4$ (111) surface, ZG(111) surface, and $ZnGa_2O_4$ (111) surface.

surface	E _{ads} , eV	d _{H-Me}	$d_{\mathrm{H-H}}$	frequency, cm ⁻¹
				$v_{\text{H-H}},\delta_{\text{H-H}}$
ZG (111)				
ZnCr ₂ O ₄ (111)	-2.84	1.98, 1.95	0.79	3647.45,
				1153.53
ZnGa ₂ O ₄ (111)	-1.01	2.57, 2.57	0.76	4122.89

Fig. s15. The most stable adsorption configurations of CO on ZnCr₂O₄ (111) surface, ZG(111) surface, and ZnGa₂O₄ (111) surface.

surface	E _{ads} , eV	d _{C-Me}	d _{O-C}	frequency, cm ⁻¹
				V _{CO}
ZG (111)		1.958	1.169	1931.64
ZnCr ₂ O ₄ (111)	-0.71	1.978	1.161	1979.21
ZnGa ₂ O ₄ (111)	-0.36	2.133	1.142	2110.31
СО			1.13	2124.27

Fig. s16. The most stable adsorption configurations of H_2O on $ZnCr_2O_4$ (111) surface, ZG(111) surface, and $ZnGa_2O_4$ (111) surface.

surface	∠НОН	d _{O-Me}	d _{O-H}	frequency, cm ⁻¹
				V _{OH} , V _{sHOH}
ZG (111)	107.58	2.067	0.99, 1.01	3421.59, 3037.90, 1506.56
ZnCr ₂ O ₄ (111)		Cr-O=1.99,	0.97, 0.97	3756.69, 3659.04
		Zn14-O=2.07		
$ZnGa_{2}O_{4}(111)$	106.31	2.143	0.98, 0.98	3592.07, 3485.48, 1564.54
H_2O	103.54		0.97, 0.98	3839.34, 3726.90, 1585.94

Fig. s17. The most stable adsorption configurations of CO_2 on $ZnCr_2O_4$ (111) surface, ZG(111) surface, and $ZnGa_2O_4$ (111) surface.

surface	∠0C0	d _{O-Me}	d _{O-C}	frequency, cm ⁻¹
				$v_{sC\text{-}O}, \delta_{O\text{-}C\text{-}O}$
ZG (111)	118.95	Cr-C=2.102	1.30, 1.31	1271.07, 1206.28
ZnCr ₂ O ₄ (111)	135.53	Cr-O=2.018, Zn-	1.25, 1.25	1695.70, 1239.66, 688.63
		O=2.062		
ZnGa ₂ O ₄ (111)	132.51	Zn-O=2.024	1.28, 1.21	1759.64, 1163.02, 713.83
CO_2	178.95		1.17, 1.19	2357.43, 1317.91, 629.92, 627.55

Fig. s18. Reaction coordinates of direct dissociation of CO (A) and CHO formation (B) on $ZnCr_2O_4(111)$ and ZG(111) surfaces.

Fig.s19. The adsorption configurations and vibrational frequency of CO on (310), (202) and (311) surfaces of $ZnCr_2O_4$ and $Ga-ZnCr_2O_4$.

catalyst	Zn	Cr_2O_4	ZnO			sig	R _{wp}
	а	wt.%	а	c	wt.%	-	
K-Ga ₀ ZnCr	8.3629	95.2054	3.2540	5.1914	4.7946±0.0950	0.8614	12.6072
K-Ga _{0.55} ZnCr	8.3645	99.3184	3.2540	5.1914	0.6816±0.0761	0.8076	11.4636
K-Ga _{1.10} ZnCr	8.3661	95.6749	3.2481	5.2171	4.3251±0.1264	0.8823	12.2794
K-Ga _{1.64} ZnCr	8.3637	96.7516	3.2481	5.2171	3.2484±0.1153	0.8700	12.4247
K-Ga _{2.18} ZnCr	8.3590	96.4870	3.2481	5.2171	3.5130±0.1128	0.8716	12.1301
ZnO			3.2200	5.2000			
ZnCr ₂ O ₄	8.3271						
K-Ga _{1.10} ZnCr K-Ga _{1.64} ZnCr K-Ga _{2.18} ZnCr ZnO ZnCr ₂ O ₄	8.3661 8.3637 8.3590 8.3271	95.6749 96.7516 96.4870	3.2481 3.2481 3.2481 3.2481 3.2200	5.2171 5.2171 5.2171 5.2171 5.2000	4.3251±0.1264 3.2484±0.1153 3.5130±0.1128	0.8823 0.8700 0.8716	12.2794 12.4247 12.1301

Table s1. The Rietveld refinement results by MAUD software for K-Ga_xZnCr samples. (x=0.0, 0.55, 1.10, 1.64 and 2.18).

species or reactions	energy, eV				
	Et	E _B	Ef		
Zn ²⁺	-0.1645				
Cr ³⁺	-5.4867				
O ²⁻	-0.0123				
Ga ³⁺	-0.3167				
ZnCr ₂ O ₄	-424.4362				
Ga ₂ O ₃	-184.7276				
Cr ₂ O ₃	-84.3126				
ZnO	-18.2438				
ZG	-438.5273				
CG	-334.6796				
ZGO	-19.6894				
O ₂	-9.8497				
ZnGa ₂ O ₄	-316.6387				
(1). $8Zn^{2+} + 16Cr^{3+} + 32O^{2-} = ZnCr_2O_4$		334.9394			
(2). $8Zn^{2+}+16Ga^{3+}+32O^{2-}=ZnGa_2O_4$		309.8619			
(3). $2Zn^{2+} + 2O^{2-}=ZnO$		17.8902			
(4). $4Cr^{3+} + 6O^{2-}=Cr_2O_3$		62.2920			
(5). $12Ga^{3+} + 18O^{2+} = Ga_2O_3$		180.7058			
$(6).Zn^{2+} + Ga^{3+} + 2O^{2-} = ZGO$		19.1836			
(7). $7Zn^{2+} + Ga^{3+} + 16Cr^{3+} + 32O^{2-} = ZG$		348.8783			
(8). $8Zn^{2+} + Ga^{3+} + 17Cr^{3+} + 32O^{2-} = CG$		250.3528			
(9). $ZnO+Ga_2O_3=ZnGa_2O_4$			229.6797		
(10).8 ZnO + Ga_2O_3 + 6 ZnCr ₂ O ₄ + 29/2			192.4038		
$O_2=14ZG$					
(11). 14 ZnO + Ga_2O_3 +16 Cr ₂ O ₃ =14			243.7237		
ZG+9/2 O ₂					
(12). $16/15$ ZnO+ $1/15$ Ga ₂ O ₃ + Cr ₂ O ₃ =			162.7697		
16/15 CG					
(13). $ZnO+15 ZnCr_2O_4 + Ga_2O_3 = 16CG$			-76.0651		
(14). 2 ZnO + $Ga_2O_3 = 4 Zn_{1/2}Ga_{1/2}O + 1/2$			-75.0422		
O ₂					
(15). $ZnO + Cr_2O_3 = ZnCr_2O_4$			254.7572		

Table s2. The total energy E_t , binding energy E_B , and reaction energy E_r for GaZnCr related reactions.

Tables s3. Bader charge distribution of CO and Ga on $ZnCr_2O_4$ (311), (310), (202) and (111) surfaces with and without Ga promotion.

surfaces	Bader charge	
311		
Ga-311	0.4092ª	
CO/311	0.1929 ^b	
CO/Ga-311	-0.0112 ^b /0.7650 ^a	
310	0	
Ga-310	0.2940 ^a	
CO on 310	0.0182 ^b	
CO/Ga-310	-0.1681 ^b /0.2000 ^a	
202		
Ga-202	0.7449^{a}	
CO/202	0.0482 ^b	
CO/Ga-202	-0.0266 ^b /0.8388 ^a	

Note: a. bader charge on Ga; b. bader charge on CO.

Table s4. The adsorption energy of CO on the exposed $ZnCr_2O_4$ surfaces with or without Ga modification.

Surfaces	Adsorption energy of CO, eV
Ga- 202	0.03
202	-0.02
311	-0.78
Ga- 311	-0.65
Ga- 310	-0.80
310	-0.64

Table s5. XPS data for Cr2	o spectras of K-Ga,	ZnCr samples.
----------------------------	---------------------	---------------

Table s5. XPS data	Table s5. XPS data for Cr2p spectras of K-Ga _x ZnCr samples.							
	concentration, mol%							
catalyst	C	r	Cr ³⁺				Cr ⁶⁺	
	Area	mol,%		Area	mol	,% A	Area	mol,%
K-Ga _{0.0} ZnCr	17168.58	10.23	63456.7	4+65357	.93 76.7	7 218	18.66	13.00
K-Ga _{0.55} ZnCr	24759.53	12.27	65025.7	9+81071	.56 72.4	3 308	52.13	15.30
K-Ga _{1.10} ZnCr	13991.78	7.22	61769.3	3+76872	.51 71.5	6 410	84.85	21.21
K-Ga _{1.64} ZnCr	9970.29	5.32	91694.9	9+74899	.72 88.9	7 106	86.77	5.71
K-Ga _{2.18} ZnCr	14936.69	7.09	93622.5	57+84781	.25 84.6	6 173	77.78	8.25
1	able s6. X	PS data f	for Ga3d	spectra o	f K-Ga _x Zr	Cr catal	ysts.	
			с	oncentrat	ion, mol%			
catalyst	Ga ³⁺ at 17	.06 eV	Ga ³⁺ at 1	9.93 eV	Ga ³⁺ at 2	1.62 eV	Ga ³⁺ at	23.74eV
	Area	mol,%	Area	mol,%	Area	mol,%	Area	mol,%
K-Ga _{0.55} ZnCr	1259.77	17.93	2284.44	32.52	2455.26	34.95	1025.53	14.60
K-Ga _{1.10} ZnCr	974.87	13.59	2309.46	32.19	2955.38	41.19	934.78	13.03
K-Ga _{1.64} ZnCr	1067.62	15.09	1889.29	26.70	2924.98	41.34	1193.22	16.87
K-Ga _{2.18} ZnCr	1406.51	18.41	1735.14	22.71	3749.57	49.08	748.80	9.80

Table s7. The surface concentration of oxygenates species of K-Ga_xZnCr catalysts.

rubie str rife s	Tuble striffe surface concentration of oxygenates species of it Guzzhor cuturysts.							
atalyst	$O_{latt}/(O_{latt} + O_{ads} + O_{OH})$	$O_{ads}/(O_{latt} + O_{ads} + O_{OH})$	$O_{OH}/(O_{latt} + O_{ads} + O_{OH})$					
K-Ga _{0.0} ZnCr	63.28	30.86	5.86					
K-Ga _{0.55} ZnCr	60.48	34.85	4.66					
K-Ga _{1.10} ZnCr	62.10	32.06	5.84					
K-Ga _{1.64} ZnCr	62.51	33.38	4.11					
K-Ga _{2.18} ZnCr	52.06	41.68	6.26					

Reference

- 1. D. A. Eustace, D. W. McComb and A. J. Craven, *Micron*, 2010, **41**, 547-553.
- 2. G. Kresse and J. Furthmuller, *Physical Review B*, 1996, **54**, 11169-11186.
- 3. G. Kresse and D. Joubert, *Physical Review B*, 1999, **59**, 1758-1775.
- 4. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, **77**, 3865-3868.
- 5. G. Henkelman, B. P. Uberuaga and H. Jonsson, *Journal of Chemical Physics*, 2000, **113**, 9901-9904.
- 6. Y. Li, F. Lian, N. Chen, Z.-j. Hao and K.-c. Chou, *International Journal of Minerals, Metallurgy, and Materials*, 2015, **22**, 524-529.
- 7. D. Zhou, J. Liu, S. Xu and P. Peng, *Computational Materials Science*, 2014, **86**, 24-29.
- 8. D. A. Andersson and C. R. Stanek, *Phys Chem Chem Phys*, 2013, **15**, 15550-15564.

Table s8. The adsorption energy of H₂, CO, H₂O, CO₂ on ZnCr spinel and ZG surfaces

surfaces.						
catalyst	species and their adsorption energies					
	H ₂	СО	H ₂ O	CO_2		
$ZnCr_2O_4(111)$	-2.88	-0.74	1.25	-1.22		
ZG (111)	-1.06	-2.99	1.73	0.42		
$ZnGa_2O_4(111)$		-0.36	-1.83	-1.31		