Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Supporting information

First Principle Studies of Mononuclear and Dinuclear Pacman Complexes for Electrocatalytic Reduction of CO₂

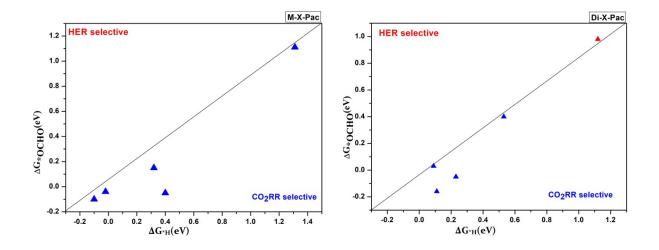
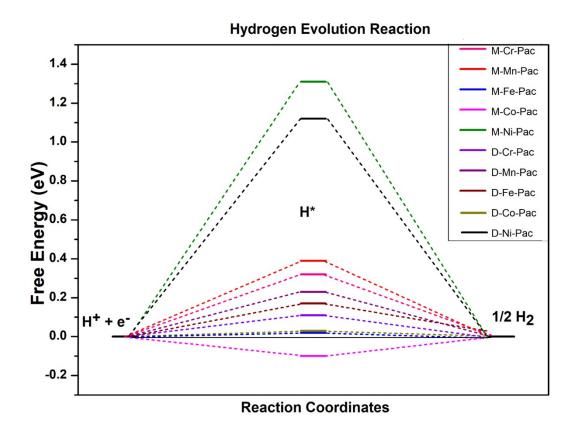
Gurpreet Kour ^{1,2}, Xin Mao ^{1,2} and Aijun Du ^{1,2}*

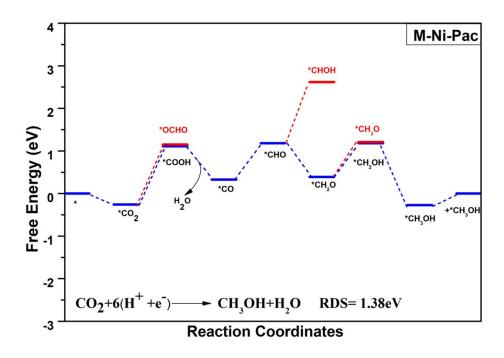
¹Centre for Materials Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia

² School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4000, Australia *Corresponding Author: aijun.du@qut.edu.au

X in complexes	M-X-Pac (charge on C	Di-X-Pac (charge on C
	in e)	in e)
Cr	+0.75	+1.36
Mn	+0.61	+0.98
Fe	+0.49	+1.3
Со	+1.11	+1.5
Ni	+1.1	+1.8

Table S1: shows the charge on carbon of the adsorbed CO_2 on the mononuclear and dinuclear complexes.


Fig. S1: Free energy for HER and the first hydrogenation step in CO_2RR for M-X-Pac and Di-X-Pac.

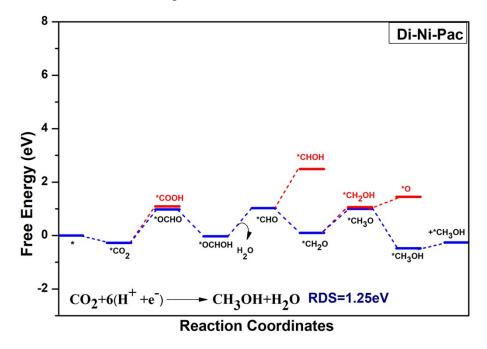
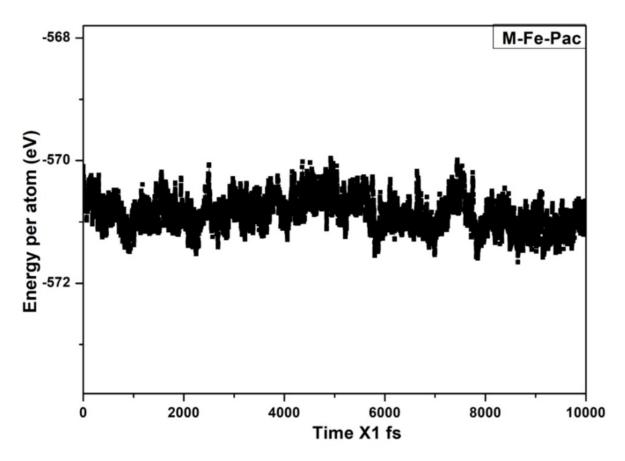

Fig. S2: The free energy diagram for HER (Hydrogen evolution reaction) on the surface of the M-X-Pac and Di-X-Pac.

Table S2: The calculated zero-point energies and entropy corrections of various adsorbed intermediates where * indicates the catalyst.


Adsorbed	E _{ZPE} (eV)	TS (eV)
intermediates		
*CO ₂	0.30	0.39
*OCHO	0.60	0.23
*COOH	0.60	0.26
*OCHOH	0.91	0.35
*CHO	0.43	0.21
*CH ₂ O	0.73	0.32
*CHOH	0.76	0.21
*CH ₃ O	1.09	0.20
*CH₂OH	1.07	0.24
*CH₃OH	1.39	0.30

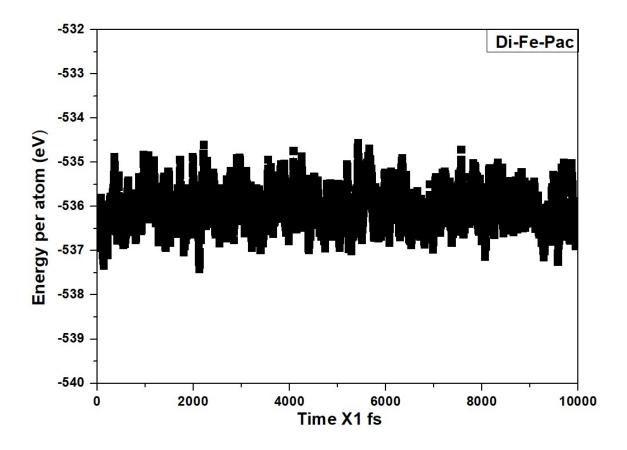

Fig. S3: Free energy diagram for the electrocatalytic reduction of CO₂ to CH₃OH using mononuclear Pacman complexes M-Ni-Pac

Fig. S4: Free energy diagram for the electrocatalytic reduction of CO₂ to CH₃OH using Dinuclear Pacman complexes Di-Ni-Pac.

Fig. S5: Variation of energy per atom against the time for AIMD simulations for mononuclear iron pacman (M-Fe-Pac) complex. The simulation is run under 400K for 10ps with a time step of 1 fs.

Fig. S6: Variation of energy per atom against the time for AIMD simulations for dinuclear iron pacman (Di-Fe-Pac) complex. The simulation is run under 400K for 10ps with a time step of 1 fs.