Electronic supplementary information

Effect of Mg substitution on LaTi_{1-x}Mg_xO_{3+δ} catalysts for improving C2

selectivity of the oxidative coupling of methane

Larissa de Bessa Lopes^a, Luiz H. Vieira^a, José Mansur Assaf^b, Elisabete Moreira

Assaf*a

^a University of São Paulo, São Carlos Institute of Chemistry, Av. Trabalhador Sãocarlense, 400, 13560-970 São Carlos, Brazil.

^b Federal University of São Carlos, Rod. W. Luiz, km.235, São Carlos, SP, Brazil.

*E-mail: <u>eassaf@iqsc.usp.br</u>

1. Supplementary information on experimental

Synthesis of pure oxide catalysts

Pure oxide catalysts (La₂O₃, TiO₂ e MgO) were prepared by the polymerized complex method. 0.2 moles of each cation precursor (lanthanum nitrate, titanium isopropoxide or magnesium nitrate) were added to 4 moles of ethylene glycol and 1 mol of anhydrous citric acid under constant stirring. The solution was stirred for 30 min at ambient temperature and then heated at 120 °C until full polymerization. The polymer was calcined at 300 °C for 2 h, macerated and calcined at 800 °C for 4 h.

XPS analyses

The inelastic background of the La 3d, Ti 2p, Mg 2s, C 1s, and O 1s spectra was subtracted using Shirley's equation. The binding energy scale of the spectra was corrected using the C1s hydrocarbon group (284.8 eV). The atomic composition of the surface layer (<5 nm) was determined by the relative proportions of the areas of the spectra corrected by Scofield's atomic sensitivity factors, with an accuracy of \pm 5%. The spectra were deconvolved using a Voigtian function, with Gaussian (70%) and Lorentzian (30%) combinations.

CO₂-TPD analyses

The catalysts samples (200 mg) were heated in Ar flow (50 mL.min⁻¹ and 10 °C.min⁻¹ heating rate) from 30 to 800 °C and then cooled to 30 °C. After this step, the samples were treated with CO_2 flow (30 mL.min⁻¹) for 1 h and Ar flow (20 mL.min⁻¹) for 30 min. Finally, the Ar flow was maintained for recording the CO_2 -TPD results, and the samples were heated at 5°C.min⁻¹ from 30°C to 800°C and held at this temperature until the curve returned to the baseline.

DRIFTS analyses

The catalysts were heated in He flow (20 mL.min⁻¹) up to 500 °C and held for 30 min; they were then cooled to 50 °C and kept under CO_2 flow (20 mL.min⁻¹) for 30 min, followed by He flow (20 mL.min⁻¹) for 15 min. The spectra were collected after this step, and the processes were repeated for the chemisorption at 300 and 500 °C. The background spectra at each temperature were obtained before the CO_2 -chemisorption. Data were treated by the Smooth and Kubelka Munk functions.

2. Supplementary information on results

Figure S1. The ratio of hydroxyl/carbonate oxygen and lattice oxygen ($A_{OH/CO3}/A_{O2}$) versus bond force constant. A linear fit was performed with $r^2 = 0.996$.

Figure S2. X-ray diffraction patterns of La₂O₃, TiO₂ and MgO catalysts.

The patterns for all pure oxide structures were verified by X-ray diffraction analysis (Fig. S1). Lanthanum oxide (PDF No. 05-0602) showed diffraction patterns corresponding to a hexagonal crystalline system and P-3m1space group. Titanium oxide (PDF No. 71-0650) was formed in a rutile crystalline structure (tetragonal, P42 / mnm), and magnesium oxide (PDF No. 45-0946) was formed in a periclase crystalline structure (cubic, Fm -3m).

Figure S3. Methane conversion (X_{CH4}), CO_X selectivity (S_{COx}), C_2H_4 selectivity (S_{C2H4}), C_2H_6 selectivity (S_{C2H6}) and C2 selectivity (S_{C2}) over the OCM reaction time for LTMO-0, LTMO-25, LTMO-50, La_2O_3 , TiO₂, MgO and PM. Reaction conditions: $CH_4/O_2 = 8$, $W = 45000 \text{ mLg}_{cat}^{-1}$. h⁻¹ and T = 800 °C.

Catalysts	X _{CH4}	S _{C2}	C ₂ H ₄ /C ₂ H ₆	GHSV (h ⁻¹)	T (°C)	CH ₄ /O ₂	S _{BET}	Productivity	
	(%)	(%)					(m²/g)	\mathbf{mmol}_{C2} .g ⁻¹ .h ⁻¹	mmol _{C2} .m ⁻² .h ⁻¹
LTMO-50	17.3	51.4	0.97	30,000ª	800	8	5.0	68.2	13.6
$La_2Ti_2O_7{}^1$	18	32	0.5	18,000ª	800	4	16.3	18.9	1.2
LaAlO ₃ ²	24	44	0.6	10,000	800	4	3.0	4.4 ^b	1.5
LaFeO ₃ ²	18	19	1.4	10,000	800	4	3.0	1.5 ^b	0.5
LaNiO ₃ ²	14	2	3	10,000	700	4	3.3	0.1 ^b	0.03
BaSrTiO ₃ ³	47	29.5	-	6,000	800	2	4.4	17.0	3.9
MgBaSrTiO ₃ ³	46.5	43	-	6,000	800	2	0.9	29.5	32.7
SrTiO ₃ ⁴	15	62.6	2	151,200	850	4	1.5	115.3 ^b	76.8
$SrTi_{0.9}Mg_{0.1}O_{3}{}^{4}$	24	64	1.3	151,200	850	4	3.2	188.6 ^b	58.9

Table S1. Catalytic performance of LTMO-50 catalyst and other perovskite structures of OCM literature.

a. WHSV (mL.g⁻¹.h⁻¹) b. catalyst mass was calculated from catalyst volume using the following densities: LaAlO₃ = 6.52 g/cm^3 ; LaFeO₃ = 6.40 g/cm^3 ; LaNiO₃ = 6.93 g/cm^3 ; SrTiO₃ = 4.81 g/cm^3 .

3. References for supplementary material

- J. Xu, Y. Zhang, X. Xu, X. Fang, R. Xi, Y. Liu, R. Zheng and X. Wang, *ACS Catal.*,
 2019, 7, 4030–4045.
- 2 I. Kim, G. Lee, H. Bin Na, J. M. Ha and J. C. Jung, *Mol. Catal.*, 2017, **435**, 13–23.
- Z. Fakhroueian, F. Farzaneh and N. Afrookhteh, *Fuel*, 2008, **87**, 2512–2516.
- D. V. Ivanov, L. A. Isupova, E. Y. Gerasimov, L. S. Dovlitova, T. S. Glazneva and
 I. P. Prosvirin, *Appl. Catal. A Gen.*, 2014, 485, 10–19.