Supporting information

Light-induced Synthesis of Platinum/Titania Nanocapsules as An Efficient, Photosensitive and Stable Electrocatalyst

Huan Huang^a, Zhao Min Sheng^{a,§,*}, Rui Liang Niu^a, Chang Ming Li^{b,*} and Sheng Han _{a,*}

Experimental

For the RRDE or RDE experiments, the 50% Pt/TiO₂ NCs slurry was coated on a GC ring-disk electrode with 0.5 μ g mm⁻², and the 50% Pt/C commercial catalyst was loaded with 0.5 μ g mm⁻². In addition, the ring electrode with a fixed potential was set on 0.5 V with a rotating speed at 1600 rpm.

The transferred electron number (n) per oxygen molecule involved in ORR can be calculated by the currents measured from the ring and disk electrode in terms of the following equation:

$$n = \frac{4|i_d|}{|i_d| + i_r/N} \tag{1}$$

where N = 0.45, i_d and i_r are the collection efficiency, disk current and ring current, respectively.

The K-L plots has been calculated from the under K-L equation (2). The K–L plots show linear relationships between J_k^{-1} and $\omega^{-1/2}$ for Fe-N_x-C900 catalyst.

$$J^{-1} = J_{K}^{-1} + J_{L}^{-1} = J_{K}^{-1} + B^{-1}\omega^{-1/2}$$
(2)

$$B = 0.62 n F C_0 (D_0)^{2/3} v^{-1/6}$$
(3)

$$J_K = nFkC_0 \tag{4}$$

where *J* is the measured current density; J_L is the diffusion limit current density; J_K is the dynamic current density; ω is the angular velocity of the disk ($\omega = 2\pi N$, N is the linear rotation speed); n is the overall number of electrons transferred in oxygen reduction; F is the Faraday constant; C₀ is the bulk concentration of O₂; v is the kinematic viscosity of the electrolyte, and k is the electron-transfer rate constant.

The electrochemical active surface area (ECSA) α (cm² mg⁻¹) for a catalyst can be estimated from the following equation [43]:

$$\alpha = Q/(m\beta) \tag{5}$$

Where Q is the charge for hydrogen desorption (C cm⁻²), m the quantity of Pt used (=0.4 mg cm⁻² in the present study), and β the charge required to oxidize a monolayer of H₂ on bright Pt (= 0.21x10⁻³ C cm⁻²) [43]. Calculations based on the CV (Fig. 4a) show that the ECSA of the present catalyst is the highest without considering the contribution of the double-layer charge.

wt% of 50% Pt/TiO₂ NCs is 50 wt.%. We take 100 mg TiO₂ NCs as support and 265.6 mg chloroplatinic acid hexahydrate (H₂PtCl₆·6H₂O), leading to mass ratio is 1:1; 198.2 mg 50% Pt/TiO₂ NCs are obtained after depositing Pt. Thus, Pt loading amount is 50 wt.%.

Figure S1. HRTEM image of 2-5 nm gases in TiO_2 NCs.

Figure S2. Images of UV light-induced synthesis of Pt / TiO_2 nanomaterials.

Figure S3. (a) Pt 4f, (b) Ti 2p and (c) O 1s spectra of 50% Pt/TiO₂ NCs.

Figure S4. HRTEM image of 66.7% Pt/TiO₂ NCs.

Figure S5. HRTEM image of 50% Pt/TiO₂ NCs after 2000 cycles.

Figure S6. (a) TEM image and (b) XRD pattern of 20% Pt/TiO₂ NCs.

Figure S7. Cycle voltammetry measurements of 20% and 50% Pt/TiO₂ NCs.

Table S1. Electrochemical active surface areas (ECASA) of the catalysts calculated

	50%	20%	50%	66.7%	50% Pt/
Catalyst	Pt/TiO ₂	Pt/TiO ₂	Pt/C	Pt/TiO	commercial
	NCs	NCs	(Commercial)	₂ NCs	TiO ₂
α (cm ² mg ⁻¹)	805	720	589	705	315

from the cyclic voltammetry without the contribution of charges from the "double electric layer".

 Table S2. Characterization of catalysts.

HER	ORR		
Tafel slope (mV dec ⁻¹)	half-wave potential (V)	$J_k^{\rm b}$ (mA cm ⁻²)	
39	0.714	3.34 (0.7V)	
32	0.76	4.65 (0.7V)	
41	0.703	3.02 (0.7V)	
	HER Tafel slope (mV dec ⁻¹) 39 32 41	HEROTafel slope (mV dec^-1)half-wave potential (V)390.714320.76410.703	