Interactive network of the dehydrogenation of alkanes, alkenes and alkynes – surface carbon hydrogenative coupling on Ru(111)

Yueyue Jiao^{a,b,c}, Huan Ma^{a,b,c}, Hui Wang^{a,b,c}, Yong-Wang Li^{a,b,c,d} Xiao-Dong Wen^{*a,b,c,d}, and Haijun Jiao^{*e}

(a) State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P.R. China. (b) The University of Chinese Academy of Sciences, Beijing 100049, P.R. China. (c) National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, P.R. China. (d) Beijing Advanced Innovation Center for Materials Genome Engineering, Industry-University Cooperation Base between Beijing Information S&T University and Synfuels China Co. Ltd, Beijing, China. (e) Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein Strasse 29a, 18059 Rostock, Germany: E-mails: wxd@sxicc.ac.cn; and Haijun.jiao@catalysis.de

Table S1. A cmparisition of the adsorption energy (eV) of CO^{*}, CH₄^{*}, CH₃CH₃^{*}, CH₃CH₂CH₃^{*}, CH₃CH₂^{*}, CH₃CH₂^{*}, and CH₃CH₂CH₂^{*} on Ru(111) surface, and CO^{*} on Ru(0001) surface calculated by rPBE and PEB functionals with/without D₃ correction.

	rPBE	rPBE+ZPE	rPBE+ZPE+D ₃	PBE ^a	PBE+ZPE	PBE+ZPE+D ₃
			Ru(0001)			
СО	-1.70	-1.66	-2.00	-1.94	-1.89	-2.23
			Ru(111)			
СО	-1.83	-1.77	-2.06	-2.07	-2.00	-2.40
CH_4	0	0.04	-0.05	-0.02 [-0.02]	-0.01	-0.17
CH_3CH_3	0.01	0.03	-0.15	-0.02[-0.03]	-0.03	-0.36
$CH_3CH_2CH_3$	0.01	0.04	-0.21	-0.04	-0.06	-0.35
CH_3	-1.77	-1.68	-2.11	-2.22[-2.05]	-2.13	-2.67
CH_3CH_2	-1.35	-1.26	-1.90	-1.83[-1.76]	-1.76	-2.48
CH ₃ CH ₂ CH ₂	-1.31	-1.27	-2.03	-1.84	-1.77	-2.66

(a) PBE p(2x2) Ru(0001) results from Ref¹ are given in square bracket.

Table S2. Zero point energy (ZPE) effect on the energy barriers and reaction energies of the minimum energy path of CH₄ successive dissociation on the Ru(111) surface. d_{Ru-C} and d_{Ru-H} respectively for the distance between the top layer Ru atoms and the closet C atom and H atom (the values of d_{Ru-C} and d_{Ru-H} greater than 2.5 Å are not listed), $d_{breeking}$ for the length of the breaking bond in transition states.

Reactions	E _a (eV)	E _r (eV)	E _{a (ZPE)} (eV)	E _{r (ZPE)} (eV)	E _{a(G)} (eV)	$\Delta G(eV)$	d _{Ru-C} (Å)	d _{ки–н} (Å)	$d_{ m breaking}$ (Å)
$CH_4 \leftrightarrows CH_3 + H$	1.03	0.21	0.88	0.02	0.95	0.19	2.284	1.678	1.606
$CH_3 \leftrightarrows CH_2 + H$	0.33	-0.32	0.20	-0.45	0.23	-0.41	2.102; 2.129; 2.229	1.672	1.571
$CH_2 \rightleftharpoons CH+H$	0.07	-0.62	-0.03	-0.68	-0.03	-0.66	2.057; 2.057; 2.062	1.675	1.491
CH ≒ C+H	1.01	0.30	0.90	0.22	0.93	0.21	1.947; 1.950; 1.974	1.676	1.654

Figure S1. Potential energy surface of CH_4^* consecutive C–H dissociation (energy level on the basis of adsorbed CH_4^*); and the energy level of surface carbonaceous species and gaseous H_2 is also given for comparison.

Figure S2. Gibbs free energy profiles of methane dehydrogenation at 490 K and 19.7 atm H_2 (energy level on the basis of adsorbed CH_4^*); and the energy level of surface carbonaceous species and gaseous H_2 is also given for comparison.

Table S3. Zero point energy (ZPE) effect on the energy barriers and reaction energies of elementary reactions of the minimum energy path of CH₃CH₃ successive dissociation on the Ru(111) surface. d_{Ru-C} and d_{Ru-H} respectively for the distance between the top layer Ru atoms and the closet C atom and H atom (the values of d_{Ru-C} and d_{Ru-H} greater than 2.5 Å are not listed), d_{breeking} for the length of the breaking bond in transition states. C₁ and C₂ respectively represent for the two C atoms nearest from the surface.

Reactions	E _a (eV)	E _r (eV)	E _{a (ZPE)} (eV)	E _{r (ZPE)} (eV)	E _{a(G)} (eV)	$\Delta G(eV)$	d _{Ru-C} (Å)	d _{Ru-H} (Å)	d_{breaking} (Å)
$CH_3CH_3 \leftrightarrows CH_3CH_2+H$	1.04	0.48	0.87	0.25	0.89	0.26	2.314	1.656	1.619
$CH_3CH_3 \leftrightarrows CH_3+CH_3$	2.50	0.36	2.28	0.10	2.25	0.09	2.176 (C ₁); 2.219 (C ₂)		1.894
$CH_3CH_2 \leftrightarrows CH_3CH+H$	0.09	-0.63	0.00	-0.75	0.03	-0.74	2.137; 2.146; 2.270	1.669	1.516
$CH_3CH_2 \rightleftharpoons CH_2CH_2+H$	0.19	-0.40	0.10	-0.50	0.13	-0.49	2.224 (C ₁); 2.227 (C ₁);	1.698	1.529
							2.392(C ₂); 2.391(C ₂)		
$CH_3CH_2 \leftrightarrows CH_3+CH_2$	0.86	-0.42	0.78	-0.55	0.77	-0.51	2.074 (C ₁); 2.332 (C ₂)		2.006
CH₃CH ≒ CH₃C+H	0.01	-0.77	-0.05	-0.82	-0.01	-0.82	2.080; 2.081; 2.101	1.673	1.421
$CH_3CH \leftrightarrows CH_2CH+H$	0.49	-0.04	0.36	-0.21	0.43	-0.02	2.257	1.683	1.585
CH₃CH ≒ CH₃+CH	0.96	-0.36	0.93	-0.45	0.98	-0.41	2.053 (C ₁); 2.346 (C ₂)		1.932
$CH_3C \leftrightarrows CH_2C+H$	0.69	0.22	0.56	0.08	0.66	0.16	2.292	1.680	1.637
$CH_3C \leftrightarrows CH_3+C$	1.53	0.69	1.44	0.58	1.54	0.64	1.949 (C ₁); 2.315 (C ₂)		2.113
$CH_2C \leftrightarrows CHC+H$	0.90	0.11	0.74	-0.02	0.74	-0.01	2.199; 2.252	1.728	1.467
$CH_2C \leftrightarrows CH_2+C$	1.66	0.38	1.55	0.28	1.60	0.29	1.982 (C ₁); 2.036 (C ₂)		2.068
CHC ≒ CC+H	1.49	0.52	1.34	0.42	1.33	0.43	1.986; 2.115; 2.119	1.713	1.611
CHC ≒ CH+C	1.07	-0.28	1.02	-0.32	1.04	-0.30	1.941 (C ₁); 2.001 (C ₁);		2.080
							1.938 (C ₂);1.947 (C ₂);2.011 (C ₂)		
CH+C+H ≒ 2CH	0.77	-0.37	0.69	-0.28	0.68	-0.29	1.979	1.670	1.628

Figure S3. Partial potential energy surface of $CH_3CH_3^*$ consecutive dissociation (energy level on the basis of adsorbed $CH_3CH_3^*$); the minimum energy path is in green, the path of $CH_3CH_2^*+H^* \rightarrow CH_2^*CH_2^*+2H^*$ is in orange, and the path of $CH_3CH^*+2H^* \rightarrow CH_2CH^*+3H^* \rightarrow CH_2C^*+4H^*$ is in blue; and the energy level of surface carbonaceous species and gaseous H_2 is also given for comparison.

Figure S4. Partial Gibbs free energy profiles of $CH_3CH_3^*$ consecutive dissociation at 490 K and 19.7 atm H_2 (energy level on the basis of adsorbed $CH_3CH_3^*$); the minimum energy path is in green, the path of $CH_3CH_2^*+H^* \rightarrow CH_2^*CH_2^*+2H^*$ is in orange, and the path of $CH_3CH^*+2H^* \rightarrow CH_2CH^*+3H^* \rightarrow CH_2C^*+4H^*$ is in blue; and the energy level of surface carbonaceous species and gaseous H_2 is also given for comparison.

For comparing hcp Ru(0001) and fcc Ru(111) surface, we calculated the dehydrogenation of $CH_3CH_2^*$. In this part, we used a p(4x4) hcp Ru(0001) slab to make sure the same coverage with fcc Ru(111) surface. The calculated equilibrium lattice constants for the hcp ruthenium phase are a = b = 2.732 Å, c = 4.324 Å, in agreement with the experiments (a = b = 2.751 Å, c = 4.282 Å).² All calculation methods and accuracy are as the same with *fcc* Ru(111) surface.

Table S4. A comparison of the barrier(eV) and reaction energies(ev) of $CH_3CH_2^*$ dehydrogenation on Ru (111) or Ru (0001) surface, including zero point energy (ZPE) correction. d_{Ru-C} and d_{Ru-H} respectively for the distance between the top layer Ru atoms and the closet C atom and H atom (the values of d_{Ru-C} and d_{Ru-H} respectively for the distance between the breaking bond in transition states. C₁ and C₂ respectively represent for the two C atoms nearest from the surface.

Reactions	Facets	Ea	E _{a(ZPE)}	E _r	E _{r(ZPE)}	d _{Ru-C} (Å)	d _{Ru-H} (Å)	d _{breaking} (Å)
$CH_3CH_2+H \leftrightarrows CH_2CH_2+2H$	Ru(0001)	0.36	0.24	-0.21	-0.35	2.243 (C ₁); 2.231 (C ₁);	1.720	1.518
						2.495 (C ₂); 2.490 (C ₂)		
	Ru(111)	0.19	0.10	-0.40	-0.50	2.224 (C ₁); 2.227 (C ₁);	1.698	1.529
						2.392 (C ₂); 2.391 (C ₂)		
$CH_3CH_2+H \leftrightarrows CH_3CH+2H$	Ru(0001)	0.36	0.23	-0.20	-0.35	2.161; 2.120; 2.328	1.660	1.618
	Ru(111)	0.09	0.00	-0.63	-0.75	2.137; 2.146; 2.270	1.669	1.516

Table S5. ZPE-corrected adsorption energies (eV) of $CH_3CH_2^*$, $CH_2^*CH_2^*$, CH_3CH^* and H^* on p(4x4) Ru(0001) surface, d_{c-c} for the length of the nearest C-C bond from surface, d_{Ru-C} and d_{Ru-H} respectively for the distance between the top layer Ru atoms and the closet C atom and H atom (the values of d_{Ru-C} and d_{Ru-H} greater than 2.5 å are not listed), d_{C-H} for the length of the longest C-H bond in adsorbed C atoms, as well as f for *fcc*, h for *hcp*, b for *bridge* and t for *top* sites.

	Sit	Eads	$d_{C-C}(Å)$	d _{Ru-C} (Å)	d _{Ru-H} (Å)	d _{с-н} (Å)
	е					
CH_3CH_2	h	-1.23	1.546	2.208; 2.468; 2.486	2.064; 2.039	1.140; 1.145
CH_2CH_2	h+t	-0.56	1.451	2.169 (t); 2.248 (f); 2.477 (f); 2.493(f)	2.165; 2.186	1.119
CH₃CH	h	-3.43	1.522	2.101; 2.267;2.100	1.822	1.206
Н	f	-2.78			1.908; 1.912; 1.930	

Table S6. Zero point energy (ZPE) effect on the energy barriers and reaction energies of elementary reactions of CH_3CH_3 successive dissociation on the Ru(111) surface except the minimum energy path. d_{Ru-C} and d_{Ru-H} respectively for the distance between the top layer Ru atoms and the closet C atom and H atom (the values of d_{Ru-C} and d_{Ru-H} greater than 2.5 Å are not listed), $d_{breeking}$ for the length of the breaking bond in transition states. C_1 and C_2 respectively represent for the two C atoms nearest from the surface.

Reactions	E _a (eV)	E _r (eV)	E _{a (ZPE)} (eV)	E _{r (ZPE)} (eV)	E _{a(G)} (eV)	$\Delta G(eV)$	d _{Ru-C} (Å)	d _{Ru-H} (Å)	d_{breaking} (Å)
$CH_2CH_2 \hookrightarrow CH_2CH+H$	0.26	-0.26	0.13	-0.46	0.20	-0.34	2.083; 2.166; 2.264	1.680	1.551
$CH_2CH_2 \leftrightarrows CH_2+CH_2$	1.27	-0.19	1.15	-0.37	1.20	-0.29	2.057 (C ₁); 2.060 (C ₂)		2.018
$CH_2CH \leftrightarrows CH_2C+H$	0.11	-0.51	0.05	-0.53	0.05	-0.57	2.048; 2.050; 2.103	1.682	1.504
$CH_2CH \leftrightarrows CHCH+H$	0.30	-0.53	0.27	-0.57	0.24	-0.61	2.105; 2.214	1.675	1.520
$CH_2CH \leftrightarrows CH_2+CH$	0.97	-0.47	0.96	-0.52	0.88	-0.55	1.968 (C ₁); 2.088 (C ₂)		2.032
СНСН ≒ СНС+Н	0.75	0.12	0.62	0.02	0.63	0.03	1.958; 2.062; 2.064	1.698	1.602
СНСН ≒ СН+СН	0.89	-0.52	0.83	-0.58	0.86	-0.56	1.975 (C ₁);2.031 (C ₁);		1.922
							1.978 (C ₂),2.030 (C ₂)		
CC ⇔ C+C	1.57	-0.39	1.51	-0.39	1.50	-0.38	1.856 (C ₁),1.923 (C ₁);		2.255
							1.898 (C ₂),1.917 (C ₂),2.165 (C ₂)		

Figure S5. Potential energy surface of CH_2*CH_2* consecutive dissociation (energy level on the basis of adsorbed CH_3CH_3*); combined with Figure S3, a complete potential energy surface of CH_3CH_3* dissociation is presented; the path of ethene dissociation through ethyne intermediate is in green; the desorption of molecularly adsorbed CH_2*CH_2*A and CH*CH*, surface H* and the break of C-C bond for CH_2*CH_2*+2H* and CH*CH*+4H* are given in red, orange, and grey, respectively.

Figure S6. Gibbs free energy profiles of CH_2*CH_2* consecutive dissociation at 490 K and 19.7 atm H_2 (energy level on the basis of adsorbed CH_3CH_3*); combined with Figure S4, a complete potential energy surface of CH_3CH_3* dissociation is presented; the path of ethene dissociation through ethyne intermediate is in green; the desorption of surface H* and the break of C-C bond for CH_2*CH_2*+2H* and CH*CH*+4H* are given in orange, and grey, respectively.

Table S7. Zero point energy (ZPE) effect on the energy barriers and reaction energies of elementary reactions of the minimum energy path of $CH_3CH_2CH_3$ successive dissociation on the Ru(111) surface. d_{Ru-C} and d_{Ru-H} respectively for the distance between the top layer Ru atoms and the closet C atom and H atom (the values of d_{Ru-C} and d_{Ru-H} greater than 2.5 Å are not listed), $d_{breeking}$ for the length of the breaking bond in transition states. C_1 and C_2 respectively represent for the two C atoms nearest from the surface.

Reactions	E _a (eV)	E _r (eV)	E _{a (ZPE)} (eV)	E _{r (ZPE)} (eV)	E _{a(G)} (eV)	$\Delta G(eV)$	d _{Ru-C} (Å)	d _{Ru-H} (Å)	d _{breaking} (Å)
$CH_3CH_2CH_3 \rightleftharpoons CH_3CH_2CH_2+H$	1.11	0.45	0.93	0.25	0.79	0.15	2.323	1.684	1.642
$CH_3CH_2CH_3 \hookrightarrow CH_3CHCH_3+H$	1.07	0.61	0.89	0.47	0.76	0.40	2.356	1.664	1.672
$CH_3CH_2CH_3 \leftrightarrows CH_3CH_2+CH_3$	2.88	0.81	2.67	0.56	2.53	0.39	2.174 (C ₁); 2.261 (C ₂)		1.947
$CH_3CH_2CH_2 \hookrightarrow CH_3CH_2CH+H$	0.28	-0.54	0.13	-0.70	0.15	-0.65	2.118; 2.156; 2.271	1.671	1.568
$CH_3CH_2CH_2 \hookrightarrow CH_2CHCH_2+H$	0.25	-0.39	0.13	-0.51	0.16	-0.53	2.202; 2.269	1.701	1.522
$CH_3CH_2CH_2 \leftrightarrows CH_3CH_2+CH_2$	0.95	0.04	0.85	-0.14	0.83	-0.19	2.070 (C ₁); 2.383 (C ₂)		2.046
$CH_3CH_2CH \leftrightarrows CH_3CH_2C+H$	0.02	-0.79	-0.01	-0.83	-0.11	-0.89	2.083; 2.093; 2.130	1.673	1.406
$CH_3CH_2CH \leftrightarrows CH_2CHCH+H$	0.47	-0.10	0.34	-0.22	0.28	-0.26	2.308	1.683	1.590
$CH_3CH_2CH \leftrightarrows CH_3CH_2+CH$	0.96	-0.06	0.93	-0.13	0.86	-0.18	2.043 (C ₁); 2.388 (C ₂)		1.987
$CH_3CH_2C \leftrightarrows CH_3CHC+H$	0.66	0.11	0.51	-0.04	0.55	-0.01	2.354	1.680	1.686
$CH_3CH_2C \leftrightarrows CH_3CH_2+C$	1.71	0.99	1.61	0.87	1.71	0.88	1.936 (C ₁); 2.374 (C ₂)		2.147
$CH_3CHC \leftrightarrows CH_3CC+H$	0.89	0.05	0.89	-0.09	0.78	-0.09	2.250; 2.278	1.737	1.483
$CH_3CHC \leftrightarrows CH_3CH+C$	1.79	0.43	1.70	0.32	1.78	0.33	1.987 (C ₁); 2.042 (C ₂)		2.304
$CH_3CC \leftrightarrows CH_3C+C$	1.04	-0.31	0.99	-0.34	0.99	-0.33	1.955 (C ₁); 2.040 (C ₁);		2.059
							1.946 (C ₂); 1.950 (C ₂);		
							1.998 (C ₂)		
$CH_3CC \leftrightarrows CH_3+CC$	2.00	1.28	1.96	1.20	2.08	1.27	1.955 (C ₁); 2.094 (C ₁);		2.153
							2.139 (C ₁); 2.358 (C ₂)		
CH₃C+C+H ≒ CH₃C+CH	0.77	-0.35	0.68	-0.29	0.64	0.41	1.974	1.671	1.630

Figure S7. Partial potential energy surface of $CH_3CH_2CH_3^*$ consecutive dissociation (energy level on the basis of adsorbed $CH_3CH_2CH_3^*$); the minimum energy path is in green, the path of $CH_3CH_2CH_2^*+H^* \rightarrow CH_3CH^*CH_2^*+2H^*$ is in orange, and the path of $CH_3CH_2CH^*+2H^* \rightarrow CH_3CH^*CH^*+3H^* \rightarrow CH_3CH^*C^*+4H^*$ is in blue; and the energy level of surface carbonaceous species and gaseous H_2 is also given for comparison.

Figure S8. Gibbs free energy profiles of $CH_3CH_2CH_3^*$ consecutive dissociation at 490 K and 19.7 atm H₂ (energy level on the basis of adsorbed $CH_3CH_2CH_3^*$); the minimum energy path is in green, the path of $CH_3CH_2CH_2^*+H^* \rightarrow CH_3CH^*CH_2^*+2H^*$ is in orange, and the path of $CH_3CH_2CH^*+2H^* \rightarrow CH_3CH^*CH^*+3H^* \rightarrow CH_3CH^*C^*+4H^*$ is in blue; and the energy level of surface carbonaceous species and gaseous H₂ is also given for comparison.

Table S8. Zero point energy (ZPE) effect on the energy barriers and reaction energies of elementary reactions of $CH_3CH_2CH_3$ successive dissociation on the Ru(111) surface except the minimum energy path. d_{Ru-C} and d_{Ru-H} respectively for the distance between the top layer Ru atoms and the closet C atom and H atom (the values of d_{Ru-C} and d_{Ru-H} greater than 2.5 Å are not listed), $d_{breeking}$ for the length of the breaking bond in transition states. C_1 and C_2 respectively represent for the two C atoms nearest from the surface.

Reactions	E _a (eV)	E _r (eV)	E _{a (ZPE)} (eV)	E _{r (ZPE)} (eV)	E _{a(G)} (eV)	$\Delta G(eV)$	<i>d</i> _{Ru–C} (Å)	d _{Ru-H} (Å)	d _{breaking} (Å)
$CH_3CHCH_3 \leftrightarrows CH_3CHCH_2+H$	0.93	-0.10	0.73	-0.73	0.71	0.78		1.716	1.581
$CH_3CHCH_3 \leftrightarrows CH_3CCH_3+H$	0.57	-0.28	0.37	-0.46	0.33	-0.55	1.999	1.680	1.660
$CH_3CHCH_3 \leftrightarrows CH_3CH+CH_3$	1.27	-0.46	1.16	-0.69	1.05	-0.80	2.082 (C ₁); 2.333 (C ₁);		2.013
							2.310 (C ₂)		
$CH_3CHCH_2 \leftrightarrows CH_3CHCH+H$	0.41	-0.25	0.24	-0.41	0.28	-0.38	2.101; 2.128; 2.244	1.688	1.579
$CH_3CHCH_2 \leftrightarrows CH_3CCH_2+H$	0.33	-0.12	0.18	-0.32	0.23	-0.26	2.090; 2.281	1.672	1.548
$CH_3CHCH_2 \leftrightarrows CH_3CH+CH_2$	1.17	-0.11	1.04	-0.30	0.90	-0.24	2.003 (C ₁); 2.120 (C ₂)		2.100
$CH_3CCH_3 \leftrightarrows CH_3CCH_2+H$	0.50	-0.38	0.34	-0.57	0.36	-0.49	2.273	1.646	1.560
$CH_3CCH_3 \leftrightarrows CH_3C+CH_3$	0.81	-0.96	0.76	-1.06	0.85	-1.06	2.179 (C ₁); 2.306 (C ₂)		1.985
$CH_3CHCH \leftrightarrows CH_3CHC+H$	0.10	-0.59	0.03	-0.65	0.03	-0.64	2.051; 2.069; 2.099	1.673	1.524
$CH_3CHCH \leftrightarrows CH_3CCH+H$	0.24	-0.56	0.15	-0.66	0.17	-0.64	2.134; 2.270	1.676	1.481
$CH_3CHCH \leftrightarrows CH_3CH+CH$	0.88	-0.46	0.84	-0.54	0.95	-0.51	1.973 (C ₁); 2.108 (C ₂)		2.055
$CH_3CCH_2 \leftrightarrows CH_3CCH+H$	0.18	-0.69	0.09	-0.75	0.08	-0.76	2.109; 2.207	1.672	1.528
$CH_3CCH_2 \leftrightarrows CH_3C+CH_2$	1.08	-0.75	1.04	-0.79	0.99	-0.81	1.951 (C ₁); 2.189 (C ₂)		2.016
$CH_3CCH \leftrightarrows CH_3CC+H$	0.72	0.03	0.58	-0.10	0.54	-0.09	1.966; 2.061; 2.073	1.699	1.601
$CH_3CCH \leftrightarrows CH_3C+CH$	1.04	-0.63	0.85	-0.71	0.80	-0.68	1.991 (C ₁); 2.051 (C ₁);		1.922
							2.313 (C ₁); 1.986 (C ₂);		
							2.035 (C ₂)		

Figure S9. Partial supplement to potential energy surface of $CH_3CH_2CH_3^*$ consecutive dissociation adsorption (energy level on the basis of adsorbed $CH_3CH_2CH_3^*$); the path of $CH_3CH^*CH_3+H^* \rightarrow CH_3CCH_3^*+2H^* \rightarrow CH_3C^*CH_2^*+3H^* \rightarrow CH_3C^*CH^*+4H8 \rightarrow CH_3C^*C^*+5H^*$ is in green, the path of $CH_3CH^*CH_3+H^* \rightarrow CH_3CH^*CH_2^*+2H^*$ is in orange.

Figure S10. Partial supplement to Gibbs free energy profiles of $CH_3CH_2CH_3^*$ consecutive dissociation adsorption at 490 K and 19.7 atm H₂ (energy level on the basis of adsorbed $CH_3CH_2CH_3^*$); the path of $CH_3CH^*CH_3+H^* \rightarrow CH_3CCH_3^*+2H^* \rightarrow CH_3C^*CH_2^*+3H^* \rightarrow CH_3C^*CH^*+4H8 \rightarrow CH_3C^*C^*+5H^*$ is in green, the path of $CH_3CH^*CH_2^*+2H^*$ is in orange.

Figure S11. Potential energy surface of $CH_3CH^*CH_2^*$ consecutive dissociation (energy level on the basis of adsorbed $CH_3CH_2CH_3^*$); combined with Figures S7 and S9, a complete potential energy surface of $CH_3CH_2CH_3^*$ dissociation is presented; the path of propene dissociation through propyne intermediate is in green; the path of $CH_3CH^*CH_2^*+2H^* \rightarrow CH_3C^*CH_2^*+3H^* \rightarrow CH_3C^*CH^*+4H^*$ is in orange; the path of $CH_3CH^*CH^*+3H^* \rightarrow CH_3CH^*CH^*+4H^*$ is in blue; the desorption of molecularly adsorbed $CH_3CH^*CH_2^*$ and $CH_3C^*CH^*$, surface H^* and the break of C-C bond for $CH_3CH^*CH_2^*+2H^*$ and $CH_3C^*CH^*+4H^*$ are respectively in red, orange, and grey.

Figure S12. Gibbs free energy profiles of $CH_3CH^*CH_2^*$ consecutive dissociation at 490 K and 19.7 atm H_2 (energy level on the basis of adsorbed $CH_3CH_2CH_3^*$); combined with Figures S8 and S10, a complete potential energy surface of $CH_3CH_2CH_3^*$ dissociation is presented; the path of propene dissociation through propyne intermediate is in green; the path of $CH_3CH^*CH_2^*+2H^* \rightarrow CH_3C^*CH_2^*+3H^* \rightarrow CH_3C^*CH^*+4H^*$ is in orange; the path of $CH_3CH^*CH_2^*+2H^* \rightarrow CH_3C^*CH_2^*+3H^* \rightarrow CH_3C^*CH^*+4H^*$ is in blue; the desorption of surface H* and the break of C-C bond for $CH_3CH^*CH_2^*+2H^*$ and $CH_3C^*CH^*+4H^*$ are respectively in orange and grey

Table S9. Computed vibrational frequencies of CH_3^* , $CH_3CH_2^*$, and $CH_3CH_2CH_2^*$ adsorbed on the Ru(111) surface. (v, δ , ρ , ω , and τ represent the mode of stretching, scissoring, rocking, wagging and twisting, respectively, the subscript of a and s represent the asymmetric and symmetric modes, respectively.)

CH ₃ *	Mode	CH ₃ CH ₂ *	Mode	$CH_3CH_2CH_2^*$	Mode
2862	$v_s(CH_3)$	3074	$v_a(CH_3)$	3073	v _s (CH ₃)
					v_s (centre CH ₂)
2824	v(CH ₃)	3062	$v_s(CH_3)$	3055	v_a (CH ₃)
					v (centre CH ₂)
2811	v(CH ₃)	2977	v(CH ₃)	3047	v(CH ₃)
1309	$\delta_a(CH_3)$	2465	v(CH ₃)	3033	v(CH ₃)
					v(centre CH ₂)
1303	$\delta_a(CH_3)$	2422	v(CH ₃)	2978	v(centre CH ₂)
1178	$\delta_{s}(CH_{3})$	1457	$\delta_a(CH_3)$	2375	$v_s(end CH_2)$
		1454	$\delta_a(CH_3)$	2350	v _a (centre CH ₂)
		1369	$\delta_s(CH_3)$	1468	$\delta_a(CH_3)$
		1356	ω(CH ₂)	1455	$\delta_a(CH_3)$
		1319		1446	δ (centre CH ₂)
		1197	δ(CH ₂)	1388	
		993		1378	
		983		1371	δ _s (CH ₃)
		943	v(CC)	1290	ω (centre CH ₂)
		632	ρ(CH ₂)	1244	
				1160	$\delta(end CH_2)$
				1048	
				1043	v(far CC)
				1029	v _a (both CC)
				853	v _s (both CC)
				780	

Table S10. Computed vibrational frequencies of CH_2^* , CH_3CH^* and $CH_3CH_2CH^*$ adsorbed on the Ru(111) surface. (v, δ , ρ , ω , and τ represent the mode of stretching, scissoring, rocking, wagging and twisting, respectively, the subscript of a and s represent the asymmetric and symmetric modes, respectively.)

CH ₂ *	Mode	CH₃CH*	Mode	$CH_3CH_2CH^*$	Mode
2982	v(CH ₂)	3062	ν(CH ₃)	3075	v _s (CH ₃)
					$v_s(CH_2)$
1938	v(CH ₂)	3016	v(CH ₃)	3051	$v_a(CH_3)$
	v(Metal-H)				
1535	δ(CH ₂)	2996	v(CH ₃)	3037	v(CH ₃)
696	ω(CH ₂)	1808	v(CH)	3017	$v_s(CH_2)$
			v(Metal-H)		
678	ρ(CH ₂)	1490	v(CH)	2980	$v_a(CH_2)$
		1430	$\delta_a(CH_3)$	1880	v(CH)
					v(Metal-H)
		1427	$\delta_a(CH_3)$	1458	$\delta_a(CH_3)$
		1340	δ _s (CH ₃)	1451	$\delta_a(CH_3)$
		980		1425	δ(CH ₂)
		961		1371	δ _s (CH ₃)
		948	v(CC)	1303	
				1269	
				1237	
				1057	v _a (both CC)
				1048	
				1040	
				878	v _s (both CC)
				771	

Table S11. Computed vibrational frequencies of $CH_3CH^*CH_3$ and $CH_3C^*CH_3$ adsorbed on the Ru(111) surface. (v, δ , ρ , ω , and τ represent the mode of stretching, scissoring, rocking, wagging and twisting, respectively, the subscript of a and s represent the asymmetric and symmetric modes, respectively.)

CH₃CH*CH₃	Mode	$CH_3C^*CH_3$	Mode	
3049	v(1 st CH ₃)	3010	v(1 st CH ₃)	
3007	v(2 nd CH ₃)	3007	v _s (2 nd CH ₃)	
			v(1 st CH ₃)	
2990	v(1 st CH ₃)	3001	v(1 st CH ₃)	
2972	v(2 nd CH ₃)	2987	$v_a(2^{nd} CH_3)$	
2957	v(1 st CH ₃)	2939	v(2 nd CH ₃)	
	v(2 nd CH ₃)			
2952	v _a (2 nd CH ₃)	2613	v(1 st CH ₃)	
	v(1 st CH ₃)			
2931	v(CH)	1513	$\delta_a(1^{st} CH_3)$	
1454	δ_a (both CH ₃)	1435	$\delta_a(2^{nd} CH_3)$	
1441	δ_a (both CH ₃)	1393	$\delta_a(2^{nd} CH_3)$	
1439	δ_a (both CH ₃)	1386	δ_s (both CH ₃)	
1416	δ_a (both CH ₃)	1359	$\delta_s(2^{nd} CH_3)$	
1369	δ_s (both CH ₃)	1319	$\delta_a(1^{st} CH_3)$	
1350		1115		
1277		1056	v _a (both CC)	
1153		973		
1081		940	v _a (both CC)	
1076	v _a (both CC)	926		
933		871	v _s (both CC)	
900				
880				
853	v _s (both CC)			

Table S12. Computed vibrational frequencies of CH^{*}, CH₃C^{*} and CH₃CH₂C^{*} adsorbed on the Ru(111) surface. (v, δ , ρ , ω , and τ represent the mode of stretching, scissoring, rocking, wagging and twisting, respectively, the subscript of a and s represent the asymmetric and symmetric modes, respectively.)

HC*	Mode	CH ₃ C*	Mode	CH ₃ CH ₂ C*	Mode
2985	v(CH)	3039	v(CH ₃)	3084	v(CH ₃)
709	δ(CH)	3013	v(CH ₃)	3055	$v_a(CH_3)$
672	δ(CH)	2978	v(CH ₃)	3031	v _s (CH ₃)
					v(CH ₂)
		1432	$\delta_a(CH_3)$	3009	v _s (CH ₂)
		1427	$\delta_a(CH_3)$	2990	$v_a(CH_2)$
		1324	$\Delta_{s}(CH_{3})$	1467	$\delta_a(CH_3)$
		1036	v(CC)	1460	$\delta_a(CH_3)$
		971		1424	δ(CH ₂)
		967		1370	δ _s (CH ₃)
				1277	
				1241	
				1059	v(near CC)
				1037	
				1035	v(far CC)
				917	v _s (both CC)
				769	

Table S13. Computed vibrational frequencies of CH_2*CH_2* and CH_3CH*CH_2* adsorbed on the Ru(111) surface. (v, δ , ρ , ω , and τ represent the mode of stretching, scissoring, rocking, wagging and twisting, respectively, the subscript of a and s represent the asymmetric and symmetric modes, respectively.)

CH ₂ *CH ₂ *	Mode	CH ₃ CH*CH ₂ *	Mode
3141	v_a (far CH ₂)	3097	v _s (CH ₃)
			v(CH)
3094	$v_s(far CH_2)$	3087	v(CH ₃)
2815	v_a (near CH ₂)	3042	$v_a(CH_3)$
			v(CH)
2796	$v_s(near CH_2)$	2972	v(CH ₃)
1433	$\delta(\text{far CH}_2)$	2777	v(CH ₂)
	v(CC)		
1311	$\delta(\text{near CH}_2)$	2675	v(CH ₂)
1170	V(CC)	1455	۶ (CH)
1179		1433	
1109	V(CC)	1439	õ₀(CH₃)
1030	ω(near CH ₂)	1373	$\delta_s(CH_3)$
	v(Metal-C)		
903	ω(far CH ₂) v(CC)	1350	
898		1290	
752		1171	
666	ρ (both CH ₂) group	1148	v _a (both CC)
		1079	
		1020	
		990	
		894	v _s (both CC)
		841	
		731	

Table S14. Computed vibrational frequencies of CH₂*CH*, CH₃CH*CH*, and CH₃C*CH₂* adsorbed on the Ru(111) surface. (v, δ , ρ , ω , and τ represent the mode of stretching, scissoring, rocking, wagging and twisting, respectively, the subscript of a and s represent the asymmetric and symmetric modes, respectively.)

CH ₂ *CH*	Mode	CH ₃ CH*CH*	Mode	CH ₃ C*CH ₂ *	Mode
3125	v _a (CH ₂)	3100	v(centre CH)	3034	v(CH ₃)
					v(CH ₂)
3084	v _s (CH ₂)	3059	v(CH ₃)	3034	v _s (CH ₃)
					v(CH ₂)
2100	v(CH)	3029	v(CH ₃)	3015	$v_a(CH_3)$
	v(Metal-H)				
1424	δ(CH ₂)	2985	v(CH₃)	2984	ν(CH ₃)
1304		2067	v(end CH)	2297	v(CH ₂)
			v(Metal-H)		
1179	v(CC)	1456	$\delta_a(CH_3)$	1456	δ(CH ₂)
978		1441	$\delta_a(CH_3)$	1438	$\delta_a(CH_3)$
888	ω(CH ₂)	1368	$\delta_s(CH_3)$	1421	$\delta_a(CH_3)$
718		1351		1361	$\delta_a(CH_3)$
652		1325		1214	v(near CC)
		1198	v(near CC)	1104	
		1054		1023	
		1010		980	
		925	v(far CC)	908	v _s (both CC)
		783		844	
		723		732	ρ(CH ₂)

Table S15. Computed vibrational frequencies of CH₃C* and CH₃CHC*, HC*C* and CH₃C*C* adsorbed on the Ru(111) surface. (v, δ , ρ , ω , and τ represent the mode of stretching, scissoring, rocking, wagging and twisting, respectively, the subscript of a and s represent the asymmetric and symmetric modes, respectively.)

CH_2C^*	Mode	CH₃CHC*	Mode	HC*C*	Mode	CH₃C*C*	Mode
3130	v _a (CH ₂)	3072	v(CH ₃)	3102	v(CH)	3091	v _s (CH ₃)
			v(CH)				
3071	v _s (CH ₂)	3068	v _s (CH ₃)	1207	v(CC)	3071	$v_a(CH_3)$
			v(CH)				
1417	δ(CH ₂)	3048	v(CH ₃)	913		3024	$v_s(CH_3)$
			v(CH)				
1247	v(CC)	2988	v(CH ₃)	753	δ(CH)	1445	$\delta_a(CH_3)$
973	ρ(CH ₂)	1452	$\delta_a(CH_3)$			1435	$\delta_a(CH_3)$
869	ω(CH ₂)	1440	$\delta_a(CH_3)$			1361	$\delta_s(CH_3)$
632	$\tau(CH_2)$	1367	$\delta_s(CH_3)$			1323	v _a (both CC)
			v(near CC)				
		1352	v _a (both CC)			1030	
		1231	v(near CC)			973	
		1059				912	v _s (both CC)
		1016					
		915	v(far CC)				
		794					

Table S16. Computed vibrational frequencies of CH*CH*, CH₃CCH*, and C*C* adsorbed on the Ru(111) surface. (ν , δ , ρ , ω , and τ represent the mode of stretching, scissoring, rocking, wagging and twisting, respectively, the subscript of a and s represent the asymmetric and symmetric modes, respectively.)

HC*CH*	Mode	CH₃C*CH*	Mode	C*C*	Mode
3053	v(CH)	3073	v(CH ₃)	1230	v(CC)
3022	v(CH)	3041	v(CH ₃)		
1085	v(CC)	3019	v(CH ₃)		
852		2999	v(CH)		
849		1446	$\delta_a(CH_3)$		
765	δ(both CH)	1437	$\delta_a(CH_3)$		
		1355	$\delta_s(CH_3)$		
		1161	δ_a (both CC)		
		1077			
		978			
		960			
		819	δ_s (both CC)		
		812			

References

- 1 C. K. Ande, S. D. Elliott and W. M. M. Kessels, J. Phys. Chem. C, 2014, 118, 26683-26694.
- 2 Y. Urashima, T. Wakabayashi, T. Masaki and Y. Terasaki, Mineral. J., 1974, 7, 438-444.