Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Ni and Zn N-Confused Porphyrin Complexes as Recyclable Catalysts For High Efficiency Solvent-Free CO₂ Fixation into Cyclic Carbonates

Jay-ar B. dela Cruz^{abc} and Chen-Hsiung Hung^c

^aSustainable Chemical Science and Technology, Taiwan International Graduate Program, Taiwan ROC
 ^bDepartment of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 300 ROC
 ^cInstitute of Chemistry, Academia Sinica, 128 Sec 2 Academia Rd., Nankang, Taipei 11529, Taiwan ROC

Table of Contents	
[1] NMR spectra of R ² -NCTPP and complexes, 1 , 2 , and 3	S2
[2] Mass spectra of R ² -NCTPP and complexes 1, 2, and 3	S6
[3] UV-Vis absorption spectra of \mathbb{R}^2 -NCTPP and complexes 1, 2, and 3	S 7
[4] Sample % yield calculation from ¹ H NMR data	S7
[5] NMR spectra of substrates and products	S11
[6] Mass spectra of cyclic carbonate products	S17
[7] HRMS(ESI) spectrum of 3 after 90 minutes of reaction at Run 3	S19
[8] Global Electrophilicity Indices and Fukui Functions	S20
[9] Cartesian coordinates of complexes 1, 2, and 3 [M06/6-31g(d) level of theory]	S21
[10] Cartesian coordinates of complexes 1 , 2 , and 3 [B3LYP/6-31g(d) level of theory]	S28

[1] NMR spectra of R^2 -NCTPP and complexes 1, 2, and 3.

Complex 1, 1H NMR 500 MHz, DMSO

Complex 1, 13C NMR 125 MHz DMSO

Complex 2, 1H NMR 500 MHz, DMSO

65555555555555555555555555555555555555	3.91 3.91 3.90	3.12 3.12 3.11 3.11 3.10 2.93	1.53 1.54 1.554 1.554 1.551 1.551 1.550 1.50 1.50 0.87 0.87 0.84
	¥	¥ /	

Complex 2, 13C NMR 125 MHz, DMSO

Complex 3, 1H HNMR 400 MHz, CDCl3

¹³C NMR of **3** in CDCl₃

[2] Mass spectra of R^2 -NCTPP and complexes 1, 2, and 3.

Eleme	ental Compo	sition Report											Page 1
Multip Toleran Elemen Numbe	nce = 3.0 PPM t prediction: 0 or of isotope p	alysis: 2 mass 1 / DBE: min = Off eaks used for i-F	(es) process -1000.0, max = IT = 2	ed 1000.0									
Monoiso 55 form Element C: 50-40	otopic Mass, Ev ula(e) evaluate ts Used: 00 H: 0-1000	ven Electron lons d with 2 results wit N: 5-5 79Br: 0	hin limits (all res -1 81Br: 0-1	ults (up to 1	000) for eac	h mass)							
JD011							KE267						01-Aug-2018
0801_JD	0011_3 10 (0.446) Cm (10-1x10.000)	+									1:	TOF MS ES+
100-	. 822	3166 ← (M+H) 825.3171											
	820.3897	826.3231	838.3852 841.322	6 853.160	2856.2975	868.6660	877.1602 881.334	0 89	6.377790	2.4062 910.2	897 921.3023	927.3022 932	1325 937.4523
810	815 820	825 830 8	35 840 845	850 85	5 860	865 870	875 880 885	890 89	900	905 91	915 920	925 930 9	35 940
Minimu Maximu	im: 50.00 im: 100.00		5.0	3.0	-1000.0 1000.0								
Mass	RA	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norr	n) Formula	a				
822.31 824.31	66 100.00 68 95.90	822.3171 824.3151	-0.5	-0.6 2.1	30.5 30.5	24.4 25.7	0.0	C52 H C52 H	19 N5 19 N5	79Br 81Br			

HRMS(ESI) of R²-NCTPP

HRMS(ESI) of 1

Elemental Compo	ition Denest						
Elemental Compos	auon Report						Page 1
Single Mass Analy Tolerance = 2.0 PPM Element prediction: O Number of isotope pe	sis / DBE: min = -10 ff aks used for i-FIT :	000.0, max = 1000.0 = 2					
Monoisotopic Mass, Odi 149 formula(e) evaluate Elements Used: C: 0-400 H: 0-1000	I and Even Electron J with 1 results within N: 5-5 Ni: 1-1 Br:	lons n limits (all results (up to 0-2	1000) for each r	nass)			
JD012				KE267			02-Aug-2018
0802_JD012 135 (6.408)				- IM	-Br]+		15:56:03 1: TOF MS ES+ 8:69e+003
100			79	799.3156	5		
710.5304	732.5178 742.394	3 758.3875768.5954	788.3854	801.3156 802.3044 	816.3062 830.3260	855.3360.859.3246 871	a.3619 903.3907 919.3698
700 710 72	730 740	750 760 770	780 790	800 810	820 830 840	850 860 870	880 890 900 910 920
Minimum: Maximum:	5.0	-1000.0 2.0 1000.0					
Mass Calc. M	ass mDa	PPM DBE	i-FIT	i-FIT (Norm)	Formula		
798.3116 798.310	7 0.9	1.1 33.0	32.5	0.0	C52 H46 N5 N1		

HRMS(ESI) of 3

[3] UV-Vis absorption spectra of R²-NCTPP, complexes 1, 2, and 3 in DCM [ϵ (cm⁻¹M⁻¹)] vs λ (nm).

[4] Sample % yield calculation from ¹H NMR data.

Total crude catalytic product is weighed, from which a portion (e.g.,30 mg) is taken for ¹H NMR analysis. A known amount of dimethyl sulfone is added to the ¹H NMR sample as internal standard. The number of moles of catalytic product in the ¹H NMR sample is directly related to the ratio of the integration of the known catalytic product peak per number of proton in proportion to the standard's integration per proton:

$$\frac{n_{(p,NMR)}}{\left(\frac{I}{H}\right)_p} = \frac{n_{(s,NMR)}}{\left(\frac{I}{H}\right)_s}$$

where $n_{(p,NMR)}$ = number of moles of the product contained in the NMR tube $n_{(s,NMR)}$ = number of moles of the standard contained in the NMR tube $(I/H)_p$ = integration per number of protons on a selected product ¹H NMR peak $(I/H)_s$ = integration per number of protons of the internal standard ¹H NMR peak

The total number of moles of product in the crude reaction mixture is calculated by multiplying $n_{(p,NMR)}$ by the ratio of the mass of the crude product to the mass of the crude NMR sample:

$$n_p = n_{(p,NMR)} \left(\frac{m_{crude}}{m_{NMR}} \right)$$

where n_p = total number of moles of the catalytic product

 m_{crude} = mass of the total crude product

 m_{NMR} = mass of the NMR sample

Percent yield, is taken as the ratio of n_p to the theoretical yield (in moles) multiplied by 100.

Sample (actual) data for the conversion of 1,2-epoxy-3-phenoxypropane (molar mass: 150.17, density: 1.109 g/mL, purity: 99.0%) to 4-(phenoxymethyl)-1,3-dioxolan-2-one (molar mass: 194.1) using dimethyl sulfone (molar mass: 94.13, purity: 98.0%) as standard:

$$\frac{n_{(p,NMR)}}{\left(\frac{l}{H}\right)_p} = \frac{n_{(s,NMR)}}{\left(\frac{l}{H}\right)_s} \Rightarrow \frac{n_{(p,NMR)}}{\frac{1}{1}} = \frac{0.0517 \text{ mmol}}{\frac{2.38}{6}}$$

 $n_{(p,NMR)} = 0.130 \ mmol$

$$n_p = n_{(p,NMR)} x\left(\frac{m_{crude}}{m_{NMR}}\right) = 0.130 \ mmol \ x\left(\frac{1418.6 \ mg}{26.69 \ mg}\right) = 6.93 \ mmol$$

$$Theoretical yield = 0.99 mL x \left(1109\frac{mg}{mL}\right) x 0.99 x \left(\frac{mmol \ substrate}{150.17 \ mg}\right) x \left(\frac{1 \ mmol \ product}{1 \ mmol \ substrate}\right) = 7.24 \ mmol$$

% yield =
$$\frac{6.93 \text{ mmol}}{7.24 \text{ mmol}} x100 = 96\%$$

[5] NMR spectra of substrates and cyclic carbonate products.

[6] Mass spectra of cyclic carbonate products

HRMS(FAB) spectrum of 4-(chloromethyl)-1,3-dioxolan-2-one (*m/z* 137.0007 [M+H]⁺)

HRMS(FAB) spectrum of 4-(butoxymethyl)-1,3-dioxolan-2-one (*m/z* 175.0968 [M+H]⁺)

HRMS(FAB) spectrum of 4-(phenoxymethyl)-1,3-dioxolan-2-one (m/z 195.0656 [M+H]⁺)

HRMS(ESI) spectrum of 4,4'-((butane-1,4-diylbis(oxy))bis(methylene))bis(1,3-dioxolan-2one) (*m*/*z* 313.0894 [M+Na]⁺)

HRMS(FAB) spectrum of 4-phenyl-1,3-dioxolan-2-one (m/z 165.0551 [M+H]⁺)

HRMS(FAB) spectrum of 4-(hydroxymethyl)-1,3-dioxolan-2-one (*m/z* 119.0345 [M+H]⁺)

[7] HRMS(ESI) spectrum of **3** after 90 minutes of reaction at Run 3

[8] **Global Electrophilicity Index (GEI).** The global electrophilicity index (GEI) was first derived by oar and co-workers¹ as a measure of a molecule's ability to take up electrons, and is denoted as ω .

$$\omega = \frac{\mu^2}{2\eta} = \frac{\chi^2}{2\eta}$$
 Eq. S1

In the above equation, μ and η are chemical potential and chemical hardness, respectively. Hardness is resistance to deformation or change,² and is the reciprocal of softness $(1/\eta)$. Moreover, μ is the negative of electronegativity, χ .³ Chemical potential and chemical hardness are both related to the energies of the frontier molecular orbitals by the following equations:

$$\mu = \frac{1}{2} (E_{HOMO} + E_{LUMO})$$
 Eq. S2

$$\eta = (E_{LUMO} - E_{HOMO})$$
 Eq. S3

Table S1 Components of GEI calculation for complexes 1-3 in eV (FMO energies are from
DFT calculations performed at the indicated levels of theory

Level of theory	Catalyst	Еномо	Elumo	χ = (-μ)	η	GEI, ω
(p	1	-4.746	-2.186	3.466	2.560	2.347
M06/ 6-31g(2	-4.556	-2.029	3.293	2.527	2.146
	3	-4.695	-2.417	3.556	2.278	2.776
P/ (b)	1	-4.309	-2.080	3.195	2.229	2.289
3LY 31g(2	-4.351	-2.125	3.238	2.227	2.354
6- B	3	-4.735	-2.840	3.787	1.894	3.786

Fukui Function. A tool that can be used to illustrate and compare local reactivities are the Fukui Indices and Dual Descriptors. Fukui⁴ Function was first introduced as a Density Functional approach to describe chemical reactivity. It is defined as the response of the chemical potential at a fixed number of electrons to changing external potential.⁵ As a reactivity predictor, it takes the following forms:

$$f^{+}(\vec{r}) = \rho_{N+1}(\vec{r}) - \rho_{N}(\vec{r})$$
 Eq. S4
$$f^{-}(\vec{r}) = \rho_{N}(\vec{r}) - \rho_{N-1}(\vec{r})$$
 Eq. S5

where $\rho(\vec{r})$ is electron density and N, N + 1, and N - 1 denote the states where the system has N electrons, one electron added to it (anionic form), and one electron removed from it (cationic form), respectively. The areas of a system that have high $f^+(\vec{r})$ and $f^-(\vec{r})$ distributions are the sites favorable to receive electrons (high electrophilicity) and donate electrons (high nucleophilicity), respectively. Moreover, these functions are related to Frontier Molecular Orbital Theory by the following expressions obtained from frozen orbital approximation.⁶⁻⁷

$$\begin{aligned} f^{+}(\vec{r}) &= |\phi_{LUMO}(\vec{r})|^{2} & \text{Eq. S6} \\ f^{-}(\vec{r}) &= |\phi_{HOMO}(\vec{r})|^{2} & \text{Eq. S7} \end{aligned}$$

[9] Cartesian Coordinates of the Optimized Structure of **1**, **2**, and **3** [M06/6-31g(d) level of theory]

С	1.020242	-4.11256	-0.92587
С	2.354691	-3.94207	-0.77826
С	2.559825	-2.55899	-0.45689
N	1.374095	-1.86601	-0.45585
С	0.412797	-2.83638	-0.69864
С	-2.96155	0.28193	-0.83971
Ν	-2.84438	-1.02438	-0.59558
С	-1.44993	-1.33039	-0.57204
С	-0.69529	-0.14758	-0.6684
С	-1.68073	0.855868	-0.90443
С	5.214661	-0.1587	0.709987
С	5.0187	1.16732	0.853052
С	3.682556	1.43884	0.379373
Ν	3.042387	0.275999	0.015947
С	3.989358	-0.70316	0.177088
С	0.159579	4.099843	-1.10179
С	1.419625	4.243132	-0.6352
С	1.884904	2.928617	-0.29393
Ν	0.94117	1.975427	-0.55728
С	-0.15559	2.703505	-1.02743
С	-0.95711	-2.63339	-0.71371
С	-1.43172	2.214307	-1.2012
С	3.813751	-2.04298	-0.11764
С	3.166139	2.708424	0.232864
С	-1.83753	-3.77893	-1.05598
С	-2.51504	3.095883	-1.69326
С	4.98041	-2.95759	-0.02948
С	-2.03442	-4.848	-0.17838
С	-2.88698	-5.89526	-0.51392
С	-3.54158	-5.89515	-1.74134
С	-3.32805	-4.85074	-2.6375
С	-2.48237	-3.80202	-2.29762
С	-3.67721	3.299443	-0.94395
С	-4.71065	4.086345	-1.43715
С	-4.59039	4.700484	-2.67912
С	-3.43291	4.514844	-3.43028
С	-2.40542	3.715122	-2.94485
С	5.021923	-3.98001	0.924217
С	6.122612	-4.82348	1.017209
С	7.203332	-4.65881	0.15601
С	7.175097	-3.64622	-0.79744
С	6.073161	-2.8032	-0.88847

С	4.009255	3.884296	0.572154
С	3.673278	4.721087	1.640714
С	4.459818	5.823644	1.95437
С	5.594033	6.109872	1.200515
С	5.936137	5.287904	0.131655
С	5.149277	4.18459	-0.17938
Ni	1.161836	0.057192	-0.43328
С	-3.96586	-1.83469	-0.11921
С	-3.76879	-2.42793	1.286342
Н	0.484799	-5.02091	-1.17609
Н	3.141441	-4.67973	-0.87943
Н	-3.94301	0.752634	-0.83083
Н	6.094423	-0.74115	0.957053
Н	5.705187	1.912072	1.23802
Н	-0.52626	4.871216	-1.43048
Н	1.998441	5.152222	-0.52604
Н	-1.51283	-4.84841	0.77982
Н	-3.03704	-6.71626	0.185496
Н	-4.2088	-6.71382	-2.00479
Н	-3.82327	-4.85365	-3.60692
Н	-2.31767	-2.97885	-2.99254
Н	-3.80622	2.828633	0.030574
Н	-5.61359	4.197009	-0.83857
Н	-5.3995	5.317703	-3.06652
Н	-3.33302	4.985084	-4.40754
Н	-1.50871	3.548476	-3.5415
Н	4.176745	-4.10222	1.601395
Н	6.139645	-5.60994	1.770249
Н	8.066067	-5.31907	0.22728
Н	8.013847	-3.51362	-1.479
Н	6.045766	-2.01178	-1.63718
Н	2.782619	4.495025	2.227196
Н	4.186424	6.461225	2.793743
Н	6.208767	6.974516	1.445288
Н	6.817742	5.510175	-0.4676
Н	5.409997	3.542469	-1.02046
Н	-4.15011	-2.65278	-0.82275
Н	-4.84319	-1.17173	-0.12144
Н	-4.29202	-3.39387	1.292626
С	-4.35119	-1.63033	2.44822
Н	-2.71275	-2.6897	1.442242
Br	-5.74805	1.219495	1.117299
Н	-4.7777	-2.30425	3.202967
Н	-5.13621	-0.94103	2.095861
Ν	-3.39037	-0.75431	3.247797
С	-4.22858	0.079065	4.169496

Н	-4.82905	-0.58775	4.796639
Н	-3.56194	0.683829	4.792182
Н	-4.87341	0.715361	3.543203
С	-2.601	0.177694	2.375966
Н	-1.94283	-0.40023	1.718581
Н	-3.32638	0.777999	1.809264
Н	-1.9947	0.812433	3.030168
С	-2.45834	-1.59554	4.041066
Н	-1.80776	-0.94265	4.631224
Н	-3.03941	-2.24245	4.706385
Н	-1.84633	-2.20076	3.366272

С	-1.42812	4.160457	-0.92453
С	-2.45015	4.070118	-0.04109
С	-2.61625	2.675668	0.254809
Ν	-1.69263	1.914136	-0.40818
С	-0.91985	2.833249	-1.1056
С	2.217513	-0.42144	-1.95156
Ν	2.087079	0.895083	-2.14546
С	0.771313	1.249664	-1.71577
С	0.093763	0.115028	-1.24764
С	1.030243	-0.9404	-1.4275
С	-5.24545	0.345745	1.618441
С	-5.35928	-0.93569	1.215602
С	-4.18757	-1.22381	0.421617
Ν	-3.38257	-0.11735	0.314913
С	-4.04306	0.865771	1.009436
С	-0.87688	-4.13248	-1.02372
С	-2.20707	-4.16017	-0.78987
С	-2.60874	-2.80291	-0.53471
Ν	-1.56707	-1.93338	-0.69155
С	-0.47944	-2.75569	-0.9999
С	0.26097	2.554765	-1.77353
С	0.79175	-2.32591	-1.29582
С	-3.68054	2.19936	1.033435
С	-3.8877	-2.48384	-0.05482
С	0.90608	3.628708	-2.56776
С	1.899158	-3.27651	-1.54272
С	-4.48677	3.18267	1.799433
С	1.518289	4.734813	-1.9717
С	2.155778	5.695781	-2.74977
С	2.178836	5.571021	-4.13527
С	1.551322	4.485381	-4.74097
С	0.921008	3.521966	-3.96282
С	3.021904	-3.25944	-0.70762

С	4.086489	-4.12391	-0.93497
С	4.04892	-5.00875	-2.00779
С	2.940852	-5.02835	-2.85063
С	1.872387	-4.16911	-2.62079
С	-3.90211	3.899744	2.848799
С	-4.63388	4.838798	3.565792
С	-5.96617	5.079692	3.244217
С	-6.5585	4.378763	2.198631
С	-5.82381	3.441465	1.480728
С	-4.9222	-3.54592	0.056833
С	-4.8067	-4.58261	0.988166
С	-5.79825	-5.55058	1.099555
С	-6.92408	-5.4953	0.283138
С	-7.05341	-4.46539	-0.64267
С	-6.06044	-3.49793	-0.75275
Ni	-1.63347	-0.00635	-0.51562
С	3.255756	1.750327	-2.33495
С	3.80773	2.267712	-1.00952
Н	-1.03243	5.050187	-1.39997
Н	-3.07559	4.864834	0.347865
Н	3.144987	-0.93515	-2.18989
Н	-5.91017	0.911407	2.260349
Н	-6.13272	-1.65477	1.4593
Н	-0.20619	-4.96154	-1.21582
Н	-2.86656	-5.01849	-0.75414
Н	1.500726	4.827239	-0.88552
Н	2.63733	6.546879	-2.27041
Н	2.678865	6.322931	-4.74328
Н	1.554008	4.388332	-5.82532
Н	0.440196	2.661572	-4.42812
Н	3.072779	-2.5921	0.155583
Н	4.929445	-4.08883	-0.24489
Η	4.881903	-5.68696	-2.18795
Н	2.90839	-5.71338	-3.69697
Н	1.010242	-4.17261	-3.28798
Н	-2.85864	3.706695	3.097848
Н	-4.16183	5.382528	4.382876
Н	-6.54078	5.814802	3.805431
Η	-7.59748	4.568911	1.93355
Н	-6.28245	2.905515	0.650012
Η	-3.92897	-4.61665	1.633528
Н	-5.69374	-6.34807	1.833671
Н	-7.7009	-6.25312	0.371808
Н	-7.93189	-4.41496	-1.28421
Н	-6.15835	-2.68719	-1.47461
Н	3.007239	2.577208	-3.0036

4.011663	1.137662	-2.84715
4.427553	3.156139	-1.21032
4.623333	1.232647	-0.25139
2.966393	2.612986	-0.38802
5.111665	-2.54299	2.149159
5.539732	1.002827	-0.82162
4.990679	1.697124	1.15491
4.071895	1.708159	1.759665
5.367078	2.733029	1.124142
4.075588	0.279442	-0.16384
6.018805	0.743483	1.724113
7.011974	0.937765	1.294474
5.740854	-0.30824	1.520941
6.214929	0.802884	3.231883
7.277202	-0.19793	3.583788
6.645495	2.156812	3.658343
4.955255	0.416795	3.954363
5.851676	2.877906	3.444906
8.198248	0.08065	3.061683
7.433509	-0.16659	4.66687
6.917288	-1.18972	3.258858
6.847777	2.141421	4.73414
7.554805	2.429651	3.112331
4.635972	-0.5663	3.566569
5.188996	0.359608	5.022361
4.195781	1.184061	3.786283
	4.011663 4.427553 4.623333 2.966393 5.111665 5.539732 4.990679 4.071895 5.367078 4.075588 6.018805 7.011974 5.740854 6.214929 7.277202 6.645495 4.955255 5.851676 8.198248 7.433509 6.917288 6.847777 7.554805 4.635972 5.188996 4.195781	4.011663 1.137662 4.427553 3.156139 4.623333 1.232647 2.966393 2.612986 5.111665 -2.54299 5.539732 1.002827 4.990679 1.697124 4.071895 1.708159 5.367078 2.733029 4.075588 0.279442 6.018805 0.743483 7.011974 0.937765 5.740854 -0.30824 6.214929 0.802884 7.277202 -0.19793 6.645495 2.156812 4.955255 0.416795 5.851676 2.877906 8.198248 0.08065 7.433509 -0.16659 6.917288 -1.18972 6.847777 2.141421 7.554805 2.429651 4.635972 -0.5663 5.188996 0.359608 4.195781 1.184061

Ν	1.976634	-0.55162	0.867294
Ν	-1.7839	2.050166	-0.34041
Ν	-3.84975	0.060252	-0.0467
Ν	-1.78268	-1.94233	-0.20419
С	0.425679	-0.01105	-0.6695
С	1.969157	0.787627	0.741174
С	1.028729	1.178105	-0.20884
С	0.633346	2.543141	-0.37659
С	-0.69657	2.899287	-0.49336
С	-1.15355	4.254675	-0.69159
С	-2.49961	4.231185	-0.59081
С	-2.87931	2.853718	-0.36128
С	-4.22727	2.472786	-0.15765
С	-4.65827	1.154803	-0.03866
С	-6.04807	0.740121	-0.02367
С	-6.05235	-0.60993	-0.06468
С	-4.66536	-1.0325	-0.11143
С	-4.23437	-2.3432	-0.27096

С	-2.87357	-2.72772	-0.38409
С	-2.4815	-4.08129	-0.70096
С	-1.13078	-4.11801	-0.64943
С	-0.68878	-2.78765	-0.30776
С	0.64032	-2.45422	-0.06783
С	1.011235	-1.07867	0.002059
С	1.638348	-3.51825	0.129046
С	1.353349	-4.62039	0.954245
С	2.294992	-5.62029	1.150454
С	3.541013	-5.53645	0.532926
С	3.844103	-4.44224	-0.27015
С	2.903282	-3.43819	-0.46844
С	1.688517	3.568269	-0.26814
С	2.860624	3.454034	-1.03016
С	3.860735	4.416539	-0.94429
С	3.731707	5.489994	-0.06663
С	2.590461	5.594883	0.722783
С	1.579605	4.646813	0.621574
С	-5.26536	3.538724	-0.10757
С	-5.62467	4.25951	-1.25057
С	-6.60518	5.243502	-1.19139
С	-7.24895	5.516709	0.011916
С	-6.90667	4.800201	1.15406
С	-5.92177	3.820194	1.094274
С	-5.26221	-3.41481	-0.36681
С	-6.13547	-3.478	-1.45711
С	-7.09532	-4.48048	-1.54274
С	-7.19481	-5.43892	-0.53948
С	-6.32914	-5.38913	0.549151
С	-5.371	-4.38576	0.633823
Н	2.530087	1.417558	1.422355
Н	-0.51593	5.10728	-0.89513
Н	-3.18792	5.064708	-0.66095
Н	-6.8998	1.410303	-0.01681
Н	-6.90996	-1.27186	-0.08048
Н	-3.16182	-4.88977	-0.94101
Н	-0.47882	-4.95523	-0.86723
Н	0.3938	-4.66368	1.467539
Н	2.059795	-6.46141	1.800878
Н	4.282302	-6.31831	0.691724
Н	4.822779	-4.32354	-0.73455
Н	3.186075	-2.58202	-1.08501
Н	2.958445	2.616455	-1.72212
Н	4.73947	4.341483	-1.58648
Н	4.514543	6.244229	-0.00056
Н	2.48677	6.418045	1.427603

Н	0.696589	4.716974	1.254657
Н	-5.12652	4.035393	-2.19417
Н	-6.8737	5.794491	-2.09155
Н	-8.01823	6.285748	0.058858
Н	-7.4057	5.007107	2.09955
Н	-5.64579	3.259027	1.987089
Н	-6.04827	-2.73027	-2.24542
Н	-7.76429	-4.51568	-2.40121
Н	-7.94533	-6.22477	-0.60682
Н	-6.4039	-6.13362	1.340254
Н	-4.69482	-4.34065	1.487461
С	2.658684	-1.20736	1.99094
Н	2.222375	-2.20257	2.111476
Н	2.396395	-0.63363	2.891884
С	4.168603	-1.30388	1.812528
Н	4.568568	-1.83652	2.689712
Н	4.410895	-1.91023	0.927544
С	4.866124	0.037588	1.65374
Н	4.465256	0.523167	0.753731
Н	4.633806	0.706087	2.503635
С	6.375713	-0.11	1.509863
Н	6.795915	-0.50659	2.446202
Н	6.581246	-0.86177	0.729004
С	7.084999	1.203183	1.229588
Н	6.531254	2.047033	1.667667
Ν	7.291262	1.584344	-0.23353
С	6.007537	1.578356	-1.01412
Н	5.27675	2.19739	-0.48254
Н	6.221394	2.016405	-1.99596
Н	5.668742	0.536172	-1.15327
С	8.269792	0.65451	-0.89206
Н	9.17472	0.61361	-0.27724
Н	7.801394	-0.33637	-1.02409
Н	8.504733	1.065113	-1.87938
С	7.847135	2.96588	-0.25031
Н	7.108837	3.654139	0.17541
Н	8.770247	2.991783	0.337984
Н	8.061017	3.249061	-1.28525
Br	5.925809	-1.86509	-1.52294
Н	-0.24183	-0.10775	-1.52002
Zn	-1.89539	0.067769	0.397122
Cl	-1.16979	0.144449	2.525064
Н	8.098794	1.215546	1.650498

[10] Cartesian Coordinates of the Optimized Structure of **1**, **2**, and **3** [B3LYP/6-31g(d) level of theory]

С	0.585609	4.065106	1.129592
С	1.758199	4.18692	0.45496
С	2.145856	2.862226	0.047521
Ν	1.217371	1.929244	0.456684
С	0.214601	2.676311	1.076036
С	-2.56569	-1.01512	1.08135
Ν	-2.66349	0.297348	1.304399
С	-1.3477	0.853159	1.185302
С	-0.43214	-0.16302	0.83361
С	-1.22404	-1.35355	0.821755
С	5.186114	0.992376	-1.21342
С	5.408003	-0.31352	-0.93914
С	4.204883	-0.81848	-0.30978
Ν	3.25883	0.178786	-0.19062
С	3.86957	1.310353	-0.69744
С	1.192423	-4.23799	0.684661
С	2.53172	-4.0706	0.574408
С	2.763958	-2.65746	0.395875
Ν	1.587182	-1.94643	0.475177
С	0.597042	-2.92746	0.647377
С	-1.03881	2.198351	1.452408
С	-0.76097	-2.69123	0.761388
С	3.358751	2.597372	-0.61117
С	4.025981	-2.14574	0.049754
С	-1.95905	3.122905	2.184804
С	-1.73135	-3.81545	0.890119
С	4.143619	3.751538	-1.14921
С	-2.55946	4.227716	1.560539
С	-3.39919	5.083379	2.277581
С	-3.64836	4.850713	3.631566
С	-3.04861	3.75984	4.266576
С	-2.21094	2.904252	3.55027
С	-2.79035	-3.9388	-0.0248
С	-3.72692	-4.96521	0.1018
С	-3.62109	-5.8912	1.141125
С	-2.57794	-5.77429	2.06379
С	-1.64509	-4.74367	1.943606
С	3.643754	4.505086	-2.22405
С	4.362091	5.586781	-2.7356
С	5.593443	5.938402	-2.17773
С	6.099432	5.201803	-1.10456
С	5.380402	4.119281	-0.59453

С	5.20442	-3.06861	-0.01572
С	5.328261	-4.02736	-1.03414
С	6.439889	-4.86979	-1.09004
С	7.448243	-4.76705	-0.12865
С	7.338957	-3.81498	0.886818
С	6.226804	-2.97244	0.941167
Ni	1.400288	-0.00234	0.40816
С	-3.96325	0.975399	1.343214
С	-4.33591	1.668214	0.002277
Н	0.007505	4.847563	1.598028
Н	2.333181	5.082563	0.271265
Н	-3.4413	-1.64808	1.096253
Н	5.84661	1.693985	-1.70136
Н	6.282974	-0.90628	-1.16304
Н	0.645154	-5.16337	0.783069
Н	3.300038	-4.82909	0.569077
Н	-2.36553	4.414121	0.50803
Н	-3.85541	5.933487	1.777295
Н	-4.29979	5.517296	4.189823
Н	-3.22771	3.577536	5.322678
Н	-1.74191	2.060022	4.048017
Н	-2.90976	-3.22787	-0.83759
Н	-4.53875	-5.01401	-0.61833
Н	-4.34932	-6.69213	1.239192
Н	-2.49474	-6.47964	2.886712
Н	-0.85256	-4.64419	2.679791
Н	2.688331	4.231523	-2.6634
Н	3.960949	6.152329	-3.57258
Н	6.153365	6.780709	-2.57509
Н	7.053036	5.47217	-0.6587
Н	5.773069	3.556632	0.247741
Н	4.549737	-4.10562	-1.78802
Н	6.519732	-5.60314	-1.8882
Н	8.313413	-5.4232	-0.17229
Н	8.11835	-3.72763	1.639271
Н	6.14327	-2.23386	1.733813
Н	-3.9664	1.699292	2.153442
Н	-4.69778	0.206531	1.599376
Н	-4.65075	2.691856	0.22137
С	-5.45186	0.899042	-0.70644
Н	-3.43799	1.731318	-0.61874
Br	-5.16839	-2.38659	-2.40695
Н	-6.36461	0.926682	-0.10395
Н	-5.18785	-0.14911	-0.89132
Ν	-5.85541	1.449905	-2.07791
С	-7.08702	0.697718	-2.52859

Н	-7.89134	0.894223	-1.81815
Н	-7.36497	1.060359	-3.51941
Η	-6.83797	-0.36752	-2.56113
С	-4.75679	1.206799	-3.0861
Η	-3.86147	1.744726	-2.77647
Η	-4.57615	0.12825	-3.12837
Η	-5.09526	1.581841	-4.05315
С	-6.17592	2.915095	-2.01187
Н	-6.5844	3.222539	-2.97523
Η	-6.91395	3.082645	-1.22545
Н	-5.26841	3.479957	-1.80339

С	-1.47554	4.204514	-0.81637
С	-2.50114	4.09913	0.068081
С	-2.67799	2.696589	0.337982
Ν	-1.75203	1.943298	-0.35106
С	-0.96966	2.875252	-1.03322
С	2.161644	-0.39038	-1.95401
Ν	2.043078	0.928702	-2.1169
С	0.726926	1.296434	-1.67801
С	0.038459	0.148084	-1.22552
С	0.965686	-0.91708	-1.43051
С	-5.31686	0.336693	1.67732
С	-5.43708	-0.94156	1.250052
С	-4.26787	-1.22425	0.442408
Ν	-3.45538	-0.11275	0.35468
С	-4.11036	0.867794	1.074853
С	-0.96569	-4.12415	-1.10428
С	-2.29915	-4.15115	-0.86524
С	-2.69988	-2.79542	-0.56957
Ν	-1.64265	-1.925	-0.70845
С	-0.55444	-2.74616	-1.04123
С	0.219495	2.607125	-1.71038
С	0.723468	-2.30673	-1.32733
С	-3.7413	2.205053	1.115802
С	-3.97539	-2.47994	-0.07063
С	0.854402	3.7267	-2.47455
С	1.833099	-3.27117	-1.5866
С	-4.54301	3.179017	1.919997
С	1.495445	4.796928	-1.83171
С	2.061496	5.83701	-2.57222
С	1.989041	5.826852	-3.96659
С	1.34297	4.772366	-4.61712
С	0.779579	3.731649	-3.8776
С	2.921064	-3.34125	-0.70049

С	3.974868	-4.22622	-0.93469
С	3.963103	-5.04931	-2.06255
С	2.890411	-4.98278	-2.95579
С	1.834186	-4.10095	-2.72068
С	-3.96266	3.826917	3.022844
С	-4.69317	4.743305	3.780744
С	-6.01841	5.031966	3.44696
С	-6.60617	4.399555	2.34925
С	-5.87437	3.48292	1.592094
С	-5.02368	-3.54733	0.010538
С	-4.93453	-4.59166	0.944992
С	-5.92763	-5.56968	1.019756
С	-7.02887	-5.51955	0.16167
С	-7.13141	-4.48396	-0.76926
С	-6.13756	-3.50574	-0.84248
Ni	-1.69477	0.014743	-0.491
С	3.213618	1.767588	-2.42042
С	3.939308	2.27292	-1.16056
Н	-1.07601	5.103537	-1.26137
Н	-3.11337	4.889153	0.477427
Н	3.074669	-0.90583	-2.21708
Н	-5.98248	0.889696	2.323678
Н	-6.21495	-1.65482	1.481307
Н	-0.31023	-4.95385	-1.32505
Н	-2.95581	-5.00805	-0.84697
Н	1.549856	4.810818	-0.74691
Н	2.556885	6.656103	-2.05771
Н	2.428041	6.636884	-4.54246
Н	1.27248	4.761673	-5.70142
Н	0.274943	2.914438	-4.38565
Н	2.952855	-2.72387	0.193365
Н	4.789816	-4.25479	-0.21649
Η	4.783165	-5.73881	-2.2462
Н	2.875328	-5.61492	-3.84007
Н	1.007595	-4.04482	-3.42377
Н	-2.93309	3.601858	3.287468
Н	-4.2274	5.229077	4.634228
Н	-6.58801	5.745338	4.036534
Η	-7.63437	4.622999	2.076914
Н	-6.3324	3.00251	0.73206
Η	-4.08393	-4.6301	1.619915
Н	-5.84256	-6.36822	1.752117
Н	-7.80197	-6.2811	0.219669
Н	-7.98452	-4.43634	-1.44102
Н	-6.21896	-2.70154	-1.56877
Н	2.901349	2.601647	-3.04182

Н	3.888277	1.148489	-3.02103
Η	4.609301	3.085779	-1.47015
С	4.747783	1.187743	-0.43992
Н	3.203891	2.716181	-0.47857
Br	5.100745	-2.74347	2.407273
Н	5.554533	0.843733	-1.1028
С	5.343411	1.669103	0.894357
Н	4.520393	1.870037	1.589102
Н	5.878974	2.614143	0.741515
Н	4.11625	0.314445	-0.23908
С	6.28109	0.593213	1.439907
Η	7.198203	0.553579	0.84503
Η	5.81136	-0.39741	1.423189
Ν	6.744277	0.778511	2.888084
С	7.749887	-0.30903	3.184573
С	7.388374	2.11787	3.0879
С	5.583347	0.616982	3.840093
Η	6.647165	2.902493	2.939965
Η	8.602374	-0.18279	2.515486
Η	8.069788	-0.2085	4.222807
Η	7.258338	-1.27282	3.019722
Η	7.779965	2.167579	4.104868
Η	8.202459	2.228865	2.369633
Η	5.141353	-0.36843	3.662672
Η	5.967535	0.693968	4.858474
Н	4.859196	1.41044	3.660253

Ν	-1.90436	0.757992	-0.10047
Ν	2.858186	0.750832	0.605376
Ν	3.590997	-1.6665	-0.85754
Ν	0.765187	-2.38516	-0.81055
С	-0.03852	-0.04432	0.877939
С	-1.19374	1.812233	0.349051
С	-0.01905	1.369444	0.974135
С	1.034599	2.231647	1.422076
С	2.3716	1.857025	1.306559
С	3.480078	2.612303	1.848694
С	4.618151	1.997831	1.440251
С	4.22158	0.845367	0.653879
С	5.171804	-0.00358	0.017826
С	4.855781	-1.17009	-0.68066
С	5.821152	-2.10141	-1.24705
С	5.118139	-3.15431	-1.73351
С	3.712704	-2.89195	-1.45418
С	2.656633	-3.78278	-1.67364

С	1.312183	-3.55004	-1.27138
С	0.316552	-4.60665	-1.27323
С	-0.84135	-4.06306	-0.82796
С	-0.58361	-2.65892	-0.56985
С	-1.57315	-1.74939	-0.19055
С	-1.19991	-0.42319	0.210374
С	-2.99856	-2.16351	-0.1521
С	-3.61744	-2.8203	-1.23389
С	-4.95535	-3.20607	-1.15976
С	-5.70407	-2.93661	-0.01079
С	-5.10997	-2.27569	1.067527
С	-3.77024	-1.89423	0.994319
С	0.650458	3.564761	1.944633
С	-0.39016	3.674114	2.888539
С	-0.77649	4.917715	3.386058
С	-0.14627	6.081051	2.937032
С	0.872625	5.99095	1.98531
С	1.268172	4.74767	1.493774
С	6.62316	0.364044	0.123089
С	7.336621	0.167036	1.316061
С	8.689607	0.500349	1.40149
С	9.352691	1.033184	0.293466
С	8.654501	1.230837	-0.89953
С	7.300436	0.899681	-0.98326
С	2.964675	-5.10002	-2.31842
С	3.747678	-6.06615	-1.66594
С	4.02908	-7.28967	-2.27685
С	3.530579	-7.56928	-3.55105
С	2.747862	-6.61821	-4.2097
С	2.46682	-5.39553	-3.59811
Н	-1.49428	2.823127	0.118099
Н	3.391396	3.48553	2.478444
Н	5.636852	2.289365	1.648351
Н	6.892923	-1.96437	-1.2478
Н	5.504319	-4.04065	-2.21525
Н	0.498415	-5.6324	-1.55804
Н	-1.78182	-4.56512	-0.65747
Н	-3.04963	-3.00411	-2.14092
Н	-5.41676	-3.70534	-2.0076
Н	-6.74954	-3.22832	0.039427
Н	-5.69018	-2.01194	1.948453
Н	-3.31228	-1.387	1.83911
Н	-0.87322	2.771725	3.25118
Н	-1.56495	4.976878	4.131723
Н	-0.44886	7.050878	3.32252
Н	1.355556	6.891706	1.616587

Н	2.040347	4.687526	0.733577
Н	6.826347	-0.25474	2.177954
Н	9.226427	0.338064	2.332463
Н	10.40621	1.291263	0.359457
Н	9.161671	1.64573	-1.76657
Н	6.757962	1.059054	-1.91114
Н	4.128582	-5.85752	-0.66992
Н	4.633669	-8.02584	-1.75368
Н	3.749376	-8.52158	-4.02654
Н	2.357954	-6.82543	-5.20274
Н	1.862919	-4.65554	-4.11607
С	-3.07494	0.921759	-0.98535
Н	-3.18326	-0.00067	-1.55366
Н	-2.82651	1.71489	-1.6977
С	-4.38698	1.240026	-0.25402
Н	-5.1828	1.183041	-1.00851
Н	-4.59538	0.450065	0.472696
С	-4.45591	2.605374	0.442565
Н	-3.61105	2.722911	1.133141
Н	-4.37261	3.411298	-0.30143
С	-5.75986	2.735681	1.24736
Н	-6.61446	2.526432	0.593273
Н	-5.77395	1.964928	2.027597
С	-5.90013	4.138407	1.83335
Н	-4.94874	4.500696	2.232829
Ν	-6.89632	4.27747	2.991252
С	-6.3049	3.734598	4.271187
Н	-5.36163	4.248607	4.461198
Η	-7.00921	3.940018	5.078937
Η	-6.16729	2.652412	4.1799
С	-8.18456	3.545346	2.700763
Η	-8.54304	3.84494	1.714915
Η	-7.99914	2.469087	2.753223
Η	-8.91149	3.829239	3.463091
С	-7.18679	5.742208	3.173604
Н	-6.24539	6.274583	3.317639
Н	-7.69546	6.116686	2.284522
Н	-7.82397	5.869322	4.049217
Br	-6.74879	0.134545	3.727439
Н	0.600944	-0.72769	1.418602
Zn	1.898023	-0.60198	-0.7187
Cl	1.338104	0.639694	-2.61453
Η	-6.2341	4.845193	1.068711

Reference

- 1. Parr, R. G.; Szentpály, L. v.; Liu, S., Electrophilicity Index. J. Am. Chem. Soc. 1999, 121 (9), 1922-1924.
 - 2. Parr, R. G.; Pearson, R. G., Absolute hardness: companion parameter to absolute electronegativity. *J. Am. Chem. Soc.* **1983**, *105* (26), 7512-7516.
- 3. Mulliken, R. S., A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities. *J. Chem. Phys.* **1934**, *2* (11), 782-793.
- 4. Fukui, K.; Yonezawa, T.; Shingu, H., A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons. J. Chem. Phys. **1952**, 20 (4), 722-725.
- 5. Parr, R. G.; Yang, W., Density functional approach to the frontier-electron theory of chemical reactivity. *J. Am. Chem. Soc.* **1984**, *106* (14), 4049-4050.
- 6. Koopmans, T., Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. *Physica* **1934**, *1* (1), 104-113.
- 7. Fuentealba, P.; Chamorro, E.; Cárdenas, C., Further exploration of the Fukui function, hardness, and other reactivity indices and its relationships within the Kohn–Sham scheme.

Int. J. Quantum Chem 2007, 107 (1), 37-45.

- 1. Parr, R. G.; Szentpály, L. v.; Liu, S., Electrophilicity Index. J. Am. Chem. Soc. 1999, 121 (9), 1922-1924.
 - 2. Parr, R. G.; Pearson, R. G., Absolute hardness: companion parameter to absolute electronegativity. *J. Am. Chem. Soc.* **1983**, *105* (26), 7512-7516.
- 3. Mulliken, R. S., A New Electroaffinity Scale; Together with Data on Valence States and on Valence Ionization Potentials and Electron Affinities. *J. Chem. Phys.* **1934**, *2* (11), 782-793.