Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Early-stage formation of (hydr)oxo bridges in transition-metal catalysts for photosynthetic processes

Shin Nakamura,¹ Matteo Capone,² Giuseppe Mattioli,³* and Leonardo Guidoni⁴

¹Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.

²Department of physical and chemical science, Università dell'Aquila, L'Aquila, 67100, Italy
³Istituto di Struttura della Materia del CNR (ISM-CNR), Area della Ricerca di Roma 1, I-00015

Monterotondo Scalo, Italy

 $\text{Table S1. Calculated effective potentials for each oxidation step } [\textit{U}(S_{i+1}-S_{i}) \text{ (V)}] \text{ for isolated and two-metal systems of Co, } \\$

Mn, and Ni at *pH* 7.0, 6.0, and 13.0, respectively.

	Effective potential $U(V)$							
	Co (pH 7.0)		Mn (pH 6.0)		Ni (<i>pH</i> 13.0)			
Transition	Isolated	Two-metal	Isolated	Two-metal	Isolated	Two-metal	Isolated (less one H+)	Two-metal (less one H ⁺)
$S_0 \rightarrow S_1$	1.60	1.29	1.12	0.80	1.79	1.83	1.03	1.27
$S_1 \rightarrow S_2$	1.63	1.39	1.85	0.85	1.45	1.41		1.38
$S_2 \rightarrow S_3$				1.52		1.97		1.64
$S_3 \rightarrow S_4$				1.62		1.46		