A Combined Experimental and Computational Study to Decipher Complexity in the

Asymmetric Hydrogenation of Imines with Ru Catalysts Bearing Atropisomerizable

Ligands

Félix León, ${ }^{a}$ Aleix Comas-Vives, ${ }^{\text {b }}$ Eleuterio Álvarez, ${ }^{\text {a }}$ and Antonio Pizzano ${ }^{\text {a, }}{ }^{*}$
${ }^{\text {a }}$ Instituto de Investigaciones Químicas and Centro de Innovación en Química Avanzada (ORFEO-CINQA), CSIC and Universidad de Sevilla, Avda Américo Vespucio 49, 41092 Sevilla, Spain.
${ }^{\text {b }}$ Department of Chemistry, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Catalonia, Spain.

SUPPLEMENTARY MATERIAL

General Experimental Procedures: S2.
Synthesis and Characterization of Ru Complexes:
Dichlorocomplexes 1: S2-S10.
Isomerization of 1a: S10-S11.
$\mathrm{Ru}(\mathrm{H})\left(\mathrm{BH}_{4}\right)(\mathbf{2 c})(\mathbf{3 b})(7): \mathrm{S} 11-\mathrm{S} 12$.
Representative catalytic hydrogenation of imines 5: S12-S14.
X-ray crystallographic determinations: S14-S23.
Simulation of NMR spectra: S23-S25.
Supplementary computational information
General considerations: S25-S29.
Interconversion between atropisomers of 1a: S29-S31.
Generation of amide complexes: S31-S32.
Intermediate agostic complexes in the hydride transfer step: S32-S33.
Conversion of ip-pro-R in N1R: S33-S34.
Further comments on the hydrogen activation pathways
from ip-pro-R and a1R: S34-S36.
References: S36-S37
NMR spectra: S38-S62.
HPLC chromatograms: S63-S78.

General Experimental Procedures. Manipulations with air sensitive compounds were performed under an atmosphere of dry nitrogen either using standard Schlenk techniques or a glove-box. The reagents were obtained from commercial suppliers and used without further purification. Solvents were dried by standard methods and distilled under nitrogen before use. Imines 5 were prepared as described previously. ${ }^{\text {Sla }}$ Complex 1d and its enantiomer 1e were prepared as described previously. ${ }^{\text {Sla }}$ The $\mathrm{C}, \mathrm{H}, \mathrm{N}$ analyses were carried out with a LECO CHNS-TruSpec microanalyzer. NMR spectra were recorded on Bruker DPX-300, DRX-400, AV-400 or DRX-500 spectrometers. The values of chemical shifts are given in parts per million (ppm) and referenced to TMS or $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as standards. The values for coupling constants (J) are given in Hz . Assignment of some ${ }^{1} \mathrm{H}$ NMR spectra was aided by the use of $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC experiments. HPLC analyses were performed by using a Waters 2690 chromatograph, these analyses were performed at 303 K. HRMS data were obtained on a Thermo Scientific Q Exactive hybrid quadrupole-Orbitrap mass spectrometer in the General Services of Universidad de Sevilla (CITIUS). Optical rotations were measured on a PerkinElmer Model 341 polarimeter.
$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 a})(\mathbf{3 a})(\mathbf{1 a})$. This complex was prepared before by reaction of $\mathrm{Ru}(2-\mathrm{Me}-$ $\left.\mathrm{C}_{3} \mathrm{H}_{4}\right)_{2}(\mathrm{P}-\mathrm{OP})$ with HCl and (S, S)-DPEN albeit in low yield (25%). ${ }^{\text {Slb }}$ Following the procedure described for $\mathbf{1 f}$ it was obtained as a yellow solid in better yield $(0.200 \mathrm{~g}, 60$ $\%$). For the sake of completeness spectroscopic data are also provided here, ${ }^{\mathrm{S} 2}$ while a full characterization of its enantiomer 1b is also provided below. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 500\right.$ $\mathrm{MHz}): \delta=7.71(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.33(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}$ arom), 7.13 (m, 6H, H arom), 7.07 (m, $4 \mathrm{H}, \mathrm{H}$ arom $), 6.94(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}$ arom $), 4.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right), 4.40(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.8,4.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCH}), 4.26(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.12(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{N} H \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 1.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30(\mathrm{~s}, 9 \mathrm{H}$,
$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.12\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.07\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162\right.$ $\mathrm{MHz}): \delta=172.7(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=47 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}), 70.4(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=47 \mathrm{~Hz}, \mathrm{P}-\mathrm{C})$.
$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 a})(\mathbf{3 b})(\mathbf{1 b})$. Obtained as a yellow solid following the procedure described for $\mathbf{1 f}(0.220 \mathrm{~g}, 65 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=7.76(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.38(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}$ arom), $7.16(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}$ arom), $7.12(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}$ arom), $6.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}$ arom), $4.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PCH}_{2}\right), 4.45(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.31(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})$ $=11.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H})$, $3.04(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHH}), 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.17\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.12\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}\right): \delta=172.7(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=47 \mathrm{~Hz}$, P-O), $70.4(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=47 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}) ;{ }^{13} \mathrm{C}\left\{{ }^{〔} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=146.4\left(\mathrm{C}_{\mathrm{q}}\right.$ arom), $146.1\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 140.0\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom $), 139.7\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom $), 134.5(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=40 \mathrm{~Hz}$, C_{q} arom $), 134.3\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=40 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 133.2(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 133.1$ $(\mathrm{d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 131.3\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 130.7\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 129.8\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom $)$, 128.9 (CH arom), 128.8 (CH arom), 128.2 (2 CH arom), 128.1 (2 CH arom), $128.0(2 \mathrm{CH}$ arom), 127.4 (2 CH arom), 127.3 (2 CH arom), 127.2 (2 CH arom), 126.9 (2 CH arom), 125.7 (2 CH arom), 125.5 (2 CH arom). Elem. Anal. (\%): C 63.50 \%, H 6.85%, N 2.84 (calcd for $\mathrm{C}_{55} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C} 63.58, \mathrm{H} 6.60, \mathrm{~N} 2.70$).
$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 b})(\mathbf{3 b})(\mathbf{1 c})$. Obtained as a yellow solid following the procedure described for $\mathbf{1 f}(0.062 \mathrm{~g}, 56 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=7.68(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.36 (m, 6H, Ar-H), 7.18 (m, 8H, Ar-H), 6.98 (m, 2H, Ar-H), $6.88(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=3.2 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.86(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.62(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.58(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.46(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.8,4.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCH}), 4.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH} H), 3.98(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{NCH}), 3.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.06(\mathrm{brm}, 2 \mathrm{H}, \mathrm{NH} H), 1.36(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.32\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}\right): \delta=170.0(\mathrm{~d}, J(\mathrm{P}-$
$\mathrm{P})=48 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}), 70.0(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=48 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=$ $155.5\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 155.1\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 142.8\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 142.4\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $)$, $142.4\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 142.0\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 139.9(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})$ $=4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom $), 139.5\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 134.3\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $)$, $133.9\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=6 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 132.7(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 132.5(\mathrm{~d}, J(\mathrm{C}-$ $\mathrm{P})=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 131.7\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 131.0\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 129.8(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=2 \mathrm{~Hz}, \mathrm{CH}$ arom $), 129.7(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=2 \mathrm{~Hz}, \mathrm{CH}$ arom $), 128.8(2$ CH arom), $128.8(2 \mathrm{CH}$ arom $), 128.1(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 128.1(\mathrm{CH}$ arom), $128.0(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 128.0(\mathrm{CH}$ arom $), 127.4(2 \mathrm{CH}$ arom $), 127.1$ (2 CH arom), 115.3 (CH arom), 114.9 (CH arom), 113.5 (CH arom), 112.8 (CH arom), 67.9 $\left(\mathrm{dd}, J(\mathrm{C}-\mathrm{P})=33,14 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 62.4(2 \mathrm{NCH}), 55.4\left(\mathrm{OCH}_{3}\right), 55.3\left(\mathrm{OCH}_{3}\right), 36.5$
 H 6.02%, N 2.45 (calcd for $\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C} 59.63$, H 5.72, N 2.84).
$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 d})(\mathbf{3 b})(\mathbf{1 f})$. Over a solution of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.288 \mathrm{~g}, 0.297 \mathrm{mmol})$ in DCM (10 mL) was added dropwise a solution of phosphine-phosphite ligand 2d (0.239 $\mathrm{g}, 0.360 \mathrm{mmol})$ in $\mathrm{DCM}(4 \mathrm{~mL})$. The mixture was stirred for 16 h and then a solution of diamine 3b $(0.073 \mathrm{~g}, 0.30 \mathrm{mmol})$ in $\mathrm{DCM}(3 \mathrm{~mL})$ was added and the resulting mixture stirred for 2 h . After this time the reaction was evaporated under reduced pressure and the resulting solid prepurified through a short pad of sílica first using a $\mathrm{Et}_{2} \mathrm{O} / n$-hexane (1:99) mixture to remove PPh_{3} and then with $\mathrm{Et}_{2} \mathrm{O}$ toe lute the complex. The solution obtained was evaporated and the solid purify by column chromatography on sílica using an $\mathrm{Et}_{2} \mathrm{O} / n-$ hexane (30:70) mixture, yielding $\mathbf{1 f}$ as a yellow solid $(0.240 \mathrm{~g}, 76 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $400 \mathrm{MHz}): \delta=7.76(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.68(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.47(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.16(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.01(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.85(\mathrm{ddd}, J(\mathrm{H}-\mathrm{P})=9.3, J(\mathrm{H}-\mathrm{H})=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$
H), $6.79(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.78(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.61(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.35(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.18(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.8,4.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCH}), 3.68(\mathrm{brm}, 1 \mathrm{H}, \mathrm{NH} H), 3.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHH}), 3.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.44(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.98(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} H), 2.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 1.19\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}\right): \delta=147.4(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})$ $=72 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}), 39.7(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=73 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=$ $155.8\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom $), 155.6\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{C}_{\mathrm{q}}\right.$ arom $), 142.5(\mathrm{dd}, J(\mathrm{C}-\mathrm{P})=10,4 \mathrm{~Hz}$, C_{q} arom $), 140.2\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 140.0\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 134.7$ $(\mathrm{d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 134.5(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 133.1(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})$ $=15 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom $), 132.7\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=15 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 132.7\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 132.3\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 130.5(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{CH}$ arom $), 130.4(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{CH}$ arom $), 129.2(\mathrm{CH}$ arom), $129.2(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, 4 \mathrm{CH}$ arom $), 128.8(\mathrm{CH}$ arom $), 128.7(2 \mathrm{CH}$ arom $), 128.6$ (2 CH arom), 128.5 (CH arom), 128.4 (CH arom), 128.3 (2 Cq arom), 127.4 (4 CH arom), $125.4\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=50 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 123.6(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=7 \mathrm{~Hz}, \mathrm{CH}$ arom $), 121.8(\mathrm{CH}$ arom $)$, $115.7(\mathrm{CH}$ arom), $115.3(\mathrm{CH}$ arom), $114.3(\mathrm{CH}$ arom), $114.1(\mathrm{CH}$ arom), $63.7(\mathrm{NCH})$, $62.2(\mathrm{NCH})$, $55.8\left(2 \mathrm{OCH}_{3}\right)$, $36.6\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.6\left(2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\right.$. Elem. Anal. (\%):C 61.77, H 5.83, N 2.61 (calcd for $\mathrm{C}_{54} \mathrm{H}_{58} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C} 61.83$, H 5.57, N 2.67).
$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 e})(\mathbf{3 a})(\mathbf{1 g})$. Obtained as a yellow solid as described for $\mathbf{1 f}(0.105 \mathrm{~g}, 68$ \%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.07(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.58(\mathrm{t}, J(\mathrm{H}-$ $\mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.42(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.28(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.22(\mathrm{~d}, 1 \mathrm{H}, J(\mathrm{H}-\mathrm{H})=$ $2.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 7.10(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.05(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.99(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), $6.88(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.67(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $4.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.05(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{NCH}), 3.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHP}), 3.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHH}), 3.27$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{NH} H), 3.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH} H), 1.63\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.53(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.02(\mathrm{dd}, J(\mathrm{H}-\mathrm{P})=11.0 \mathrm{~Hz}, J(\mathrm{H}-\mathrm{H})=7.3 \mathrm{~Hz}, 3 \mathrm{H}$,
$\left.\mathrm{CH}_{3}\right), 0.94\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=147.7(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=$ $66 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}), 50.4(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=66 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=148.0$ $\left(\mathrm{d}, J(\mathrm{C}-\mathrm{P})=16 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 146.6\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 145.2\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 145.0(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}$, C_{q} arom $), 139.7\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 139.6\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 139.4\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 137.4(\mathrm{~d}$, $J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 133.4\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=24 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 133.1(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=15$ $\mathrm{Hz}, \mathrm{C}_{\mathrm{q}}$ arom $), 133.0(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=8 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 131.3\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 130.5\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $)$, $129.7\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 129.3\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 129.1(\mathrm{CH}$ arom $), 128.9(2 \mathrm{CH}$ arom $), 128.5(2 \mathrm{CH}$ arom), $128.4(\mathrm{CH}$ arom $), 128.2(\mathrm{CH}$ arom $), 127.8(\mathrm{CH}$ arom $), 127.7,(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}$, 2 CH arom $), 127.5(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), $127.1(2 \mathrm{CH}$ arom), $126.7(2 \mathrm{CH}$ arom), $126.5(\mathrm{CH}$ arom $), 126.4(\mathrm{CH}$ arom $), 124.5(\mathrm{CH}$ arom $), 69.0\left(\mathrm{CH}_{2} \mathrm{O}\right), 64.2(\mathrm{NCH})$, $62.1(\mathrm{NCH}), 37.2\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 36.0\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.5\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 34.1\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 32.9$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.5(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=31 \mathrm{~Hz}$, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)\right), 14.1\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=6 \mathrm{~Hz}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)\right)$. Elem. Anal. (\%): C 64.31, H 6.99, N 2.36 (calcd for $\mathrm{C}_{57} \mathrm{H}_{72} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C} 64.16$, H 6.80, N 2.63).
$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 e})(\mathbf{3 b})(\mathbf{1 h})$. Obtained as a yellow solid as described for $\mathbf{1 f}(0.098 \mathrm{~g}, 65$ \%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.09(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.61(\mathrm{t}, J(\mathrm{H}-$ $\mathrm{H})=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.22(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=3.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.13(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.09(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}$, Ar-H), $6.90(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.83(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $4.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.08(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{NCH}), 3.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHP}), 3.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHH}), 3.29$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{NH} H), 3.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH} H), 1.66\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.56(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.02\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.97\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=147.7(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=66 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}), 50.4(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=66 \mathrm{~Hz}, \mathrm{P}-$ C); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=147.9\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=15 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 146.6\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 145.1\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 144.9\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 139.6\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 139.5(\mathrm{~d}$,
$J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom $), 139.3\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 137.3(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 133.3$ $\left(\mathrm{d}, J(\mathrm{C}-\mathrm{P})=25 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 133.1\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=14 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 133.0(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=7$ $\mathrm{Hz}, 2 \mathrm{CH}$ arom), 131.1 (C_{q} arom), $130.4\left(\mathrm{CH}\right.$ arom), 129.6 (C_{q} arom), $129.2\left(\mathrm{C}_{\mathrm{q}}\right.$ arom), $129.1(\mathrm{CH}$ arom), 128.9 (2 CH arom), 128.5 (2 CH arom), $128.3(\mathrm{CH}$ arom), $128.1(\mathrm{CH}$ arom), $127.7(\mathrm{CH}$ arom $), 127.6,(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 127.3(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}$, 2 CH arom), 127.0 (2 CH arom), 126.7 (2 CH arom), 126.4 (CH arom), 126.3 (CH arom), $124.4(\mathrm{CH}$ arom $), 68.9\left(\mathrm{CH}_{2} \mathrm{O}\right), 64.1(\mathrm{NCH}), 62.0(\mathrm{NCH}), 37.0\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.9$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.4\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)^{2}$, $34.0\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $32.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.3$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 29.4\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=30 \mathrm{~Hz}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)\right), 14.0(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=6 \mathrm{~Hz}$, $\mathrm{PCH}\left(\mathrm{CH}_{3}\right)$). Elem. Anal. (\%): C 64.35, H 7.03, N 2.32 (calcd for $\mathrm{C}_{57} \mathrm{H}_{72} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Ru}$: C 64.16, H 6.80, N 2.63).
$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 c})(\mathbf{3 c})(\mathbf{1 i})$. Obtained as a yellow solid as described for $\mathbf{1 j}(0.200 \mathrm{~g}, 72$ \%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=7.78(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.70(\mathrm{t}, J(\mathrm{H}-$ $\mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.48(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30$ $(\mathrm{d}, J(\mathrm{H}-\mathrm{H})=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.18(\mathrm{dd}, J(\mathrm{H}-\mathrm{H})=7.9 \mathrm{~Hz}, J(\mathrm{H}-\mathrm{P})=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.11(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.87(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.28(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.16$ $(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 3.68(\mathrm{brm}, 1 \mathrm{H}, \mathrm{NH} H), 3.43(\mathrm{brm}, 1 \mathrm{H}, \mathrm{NHH}), 3.01$ (brt, $J(\mathrm{H}-\mathrm{H})=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} H), 2.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 1.23\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.11\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162\right.$ $\mathrm{MHz}): \delta=146.8(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=72 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}), 39.5(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=73 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=162.4\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{F})=246 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \operatorname{arom}\right), 162.1(\mathrm{~d}, J(\mathrm{C}-\mathrm{F})=246 \mathrm{~Hz}$, C_{q} arom $), 155.2\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 146.4\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom $), 145.9\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 145.8$ $\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 139.7\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom $), 135.5\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom $), 134.4(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $)$, $134.1(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 132.8\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=15 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 132.3(\mathrm{~d}, J(\mathrm{C}-$ $\mathrm{P})=12 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom $), 132.3(\mathrm{CH}$ arom $), 131.9(\mathrm{CH}$ arom $), 131.4(\mathrm{CH}$ arom $), 131.2(\mathrm{CH}$
arom $), 130.1(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 128.8(\mathrm{~d}, J(\mathrm{C}-\mathrm{F})=22 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 128.8$ $(\mathrm{d}, J(\mathrm{C}-\mathrm{F})=22 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 128.4(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $) 128.2(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=$ $9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 127.3(2 \mathrm{CH}$ arom $), 125.7\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom $), 124.3(\mathrm{dd}, J(\mathrm{C}-\mathrm{P})=55,5 \mathrm{~Hz}$, C_{q} arom $), 123.2(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=6 \mathrm{~Hz}, \mathrm{CH}$ arom $), 121.5(\mathrm{CH}$ arom $), 116.0(\mathrm{CH}$ arom $), 115.8$ (CH arom), $115.7(\mathrm{CH}$ arom), $115.5(\mathrm{CH}$ arom), $63.0(\mathrm{NCH}), 61.7(\mathrm{NCH}), 36.2$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $36.1\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.1\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $30.9(2$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 380 \mathrm{MHz}\right): \delta=-114.3,-114.4$. Elem. Anal. (\%): C 63.03, H 6.14, N 2.31 (calcd for $\mathrm{C}_{60} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2}$ Ru: C 63.38, H 6.03, N 2.46).
$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 c})(\mathbf{3 d})(\mathbf{1 j})$. Over a solution of $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}(0.122 \mathrm{~g}, 0.126 \mathrm{mmol})$ in DCM $(5 \mathrm{~mL})$ was added dropwise a solution of $\mathbf{2 c}(0.100 \mathrm{~g}, 0.14 \mathrm{mmol})$ in DCM $(2 \mathrm{~mL})$. The mixture was stirred for 16 h after which a suspensión of the dihydrochloride of diamine $3 \mathbf{d}(0.023 \mathrm{~g}, 0.084 \mathrm{mmol})$ in $\mathrm{DCM}(2 \mathrm{~mL})$ and $\mathrm{NEt}_{3}(0.043 \mathrm{~mL}, 0.336 \mathrm{mmol})$ were added. The resulting mixture was stirred for 2 h and evaporated under reduced pressure to give a yellow residue which was dissolved in a $\mathrm{Et}_{2} \mathrm{O} / n$-hexane (1:99) mixture, passed through a short pad of sílica to remove PPh_{3} and the compound finally eluted with $\mathrm{Et}_{2} \mathrm{O}$. The solution obtained was evaporated and the residue purified by column chromatography on sílica using a $\mathrm{Et}_{2} \mathrm{O} / n$-hexane (20:80) mixture as eluent. Complex $\mathbf{1} \mathbf{j}$ was finally obtained as a yellow solid $(0.095 \mathrm{~g}, 65 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=$ $8.07(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.99(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.77(\mathrm{t}, J(\mathrm{H}-\mathrm{H})$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.66(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.58(\mathrm{brs}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.47(\mathrm{dd}, J(\mathrm{H}-\mathrm{H})=7.7$ $\mathrm{Hz}, J(\mathrm{H}-\mathrm{P})=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.39(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.13(\mathrm{~d}, J(\mathrm{H}-$ $\mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.95(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.54(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.9,4.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.41(\mathrm{dt}, J(\mathrm{H}-\mathrm{H})=11.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.96(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH} H), 3.68(\mathrm{brm}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 3.23(\mathrm{brt}, J(\mathrm{H}-\mathrm{H})=10.8 \mathrm{~Hz} 1 \mathrm{H}$, $\mathrm{NH} H), 3.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 1.51\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 1.39\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\right.$
$\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}\right): \delta=146.6(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=72 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}), 39.3(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=72 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}) ;$ ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta=159.4\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 159.0\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 155.2(\mathrm{~d}, J(\mathrm{C}-$ $\left.\mathrm{P})=10 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \operatorname{arom}\right), 146.3\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}} \operatorname{arom}\right), 145.9\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=7 \mathrm{~Hz} \mathrm{C}_{\mathrm{q}}\right.$ arom $), 139.6\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom $), 134.4(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 134.1(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10$ $\mathrm{Hz}, 2 \mathrm{CH}$ arom $), 132.9\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=15 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 132.5\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=15 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $)$, $132.3(\mathrm{CH}$ arom $), 132.0(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=7 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 131.8(\mathrm{CH}$ arom $), 131.3\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 131.3\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 130.1(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=11 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 128.3(\mathrm{CH}$ arom $), 128.2$ (4 CH arom), $128.1(\mathrm{CH}$ arom $), 128.0(4 \mathrm{CH}$ arom $), 127.3\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 127.3\left(\mathrm{C}_{\mathrm{q}}\right.$ arom), $125.7\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom $), 124.4\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=55 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 123.1(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=6 \mathrm{~Hz}, \mathrm{CH}$ arom), $121.4(\mathrm{CH}$ arom $), 114.2(2 \mathrm{CH}$ arom), $114.0(2 \mathrm{CH}$ arom $), 62.9(\mathrm{NCH}), 61.5$ $(\mathrm{NCH}), 55.1\left(\mathrm{OCH}_{3}\right), 55.0\left(\mathrm{OCH}_{3}\right), 36.1\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.1\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.4\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 30.9 (2 $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Elem. Anal. (\%): C 64.31, H 6.56, N 2.16 (calcd for $\mathrm{C}_{62} \mathrm{H}_{74} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C} 64.13$, H 6.42, N 2.41).
$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 c})(\mathbf{4})(\mathbf{1 k})$. Obtained as described for $\mathbf{1 f}$ as a yellow solid $(0.095 \mathrm{~g}, 71$ \%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right): \delta=7.90(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.75(\mathrm{t}, J(\mathrm{H}-$ $\mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.42(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.22(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19$ (m, 1H, Ar-H), $7.14(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.10(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.76(\mathrm{~m}, 3 \mathrm{H}, 2$ $\mathrm{NCH}+\mathrm{N} H \mathrm{H}), 2.60(\mathrm{brm}, 2 \mathrm{H}, \mathrm{N} H \mathrm{H}), 2.45(\mathrm{brm}, 1 \mathrm{H}, \mathrm{NH} H), 1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}(\mathrm{CH} 3)_{2}\right) 1.38$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.17\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $0.79\left(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.64\left(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.62$ $\left(\mathrm{d}, J(\mathrm{H}-\mathrm{H})=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.61\left(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 162 \mathrm{MHz}\right): \delta=144.8(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=72 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}), 38.9(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=72 \mathrm{~Hz}$, $\mathrm{P}-\mathrm{C}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right): \delta 155.7\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 146.8$ $\left(\mathrm{d}, J(\mathrm{C}-\mathrm{P})=12 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 145.8\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 145.6\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 145.4$ $\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 140.0\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 139.4\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 134.7$
$(\mathrm{d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), $133.8(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), 133.6 (d, $J(\mathrm{C}-\mathrm{P})$ $=4 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom $), 133.2\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 132.4(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{CH}$ arom $)$, $132.3(\mathrm{CH}$ arom $), 131.9(\mathrm{CH}$ arom), $131.4(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=3 \mathrm{~Hz}, \mathrm{CH}$ arom $), 129.9(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})$ $=2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom $), 129.7\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=2 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 128.2(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom), $128.0(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 127.7(\mathrm{CH}$ arom $), 127.5(\mathrm{CH}$ arom $), 126.0$ $(\mathrm{CH}$ arom $), 125.3(\mathrm{CH}$ arom $), 123.1\left(\mathrm{dd}, J(\mathrm{C}-\mathrm{P})=56,5 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $) 122.9(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=$ $7 \mathrm{~Hz}, \mathrm{CH}$ arom), $121.8(\mathrm{t}, J(\mathrm{C}-\mathrm{P})=4 \mathrm{~Hz}, \mathrm{CH}$ arom), $59.9(\mathrm{NCH}), 57.8(\mathrm{NCH}), 36.5$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $35.8\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.6\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.5\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $32.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 31.5 (2 $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $27.3\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right)$, $26.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right)$, $20.9\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right)$, 19.9 $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right), 13.8\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right)$, $13.5\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right.$. Elem. Anal. (\%): C 63.02, H 7.36, N 2.41 (calcd for $\mathrm{C}_{54} \mathrm{H}_{74} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C} 62.78, \mathrm{H} 7.22, \mathrm{~N} 2.71$).

Isomerization of 1a. A sample of $\mathbf{1 a}(0.068 \mathrm{~g}, 0.062 \mathrm{mmol})$ was added EtOH $(0.6$ mL) and the mixture heated at $60^{\circ} \mathrm{C}$ for 18 h . After this time, conversion over 95% was observed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR. The solution was evaporated under reduced pressure, extracted in a $\mathrm{Et}_{2} \mathrm{O}: n$-hexane (1:2) mixture and the mixture passed through a short pad of silica. Evaporation of the solution obtained yielded a mixture of cis-1a and cis-1a' in a 2.5:1 ratio as a very pale yellow solid ($0.057 \mathrm{~g}, 84 \%$. cis-1a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta=8.23$ (brm, $2 \mathrm{H}, \mathrm{H}$ arom), $7.71(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}$ arom), 7.59 (brm, $1 \mathrm{H}, \mathrm{H}$ arom), 7.51 (brm, 1H, H arom), 7.41 (brm, $3 \mathrm{H}, \mathrm{H}$ arom), 7.33 (brm, $3 \mathrm{H}, \mathrm{H}$ arom), 7.28 (brm, 2H, H arom), 7.09 (brm, $3 \mathrm{H}, \mathrm{H}$ arom), $7.00(\mathrm{t}, J(\mathrm{H}-\mathrm{H})=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ arom), $6.83(\mathrm{brm}, 4 \mathrm{H}, \mathrm{H}$ arom), $6.34(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}$ arom $), 5.31(\mathrm{dt}, J(\mathrm{H}-\mathrm{P})=37.2$, $9.5 \mathrm{~Hz}, J(\mathrm{H}-\mathrm{H})=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{PC} H \mathrm{H}), 4.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PC} H \mathrm{H}$ and NCH$), 4.19(\mathrm{brm}, 1 \mathrm{H}$, $\mathrm{N} H \mathrm{H}), 3.64$ (brm, $1 \mathrm{H}, \mathrm{NCH}), 2.52(\mathrm{brm}, 2 \mathrm{H}, 2 \mathrm{~N} H \mathrm{H}), 2.03(\mathrm{brm}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 0.96\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\right.\right.\right.$ $\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right): \delta=169.3(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=44 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}), 75.3(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=44 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}) ;$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=147.4\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $)$, $146.2\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 145.0\left(\mathrm{C}_{\mathrm{q}}\right.$ arom), $142.2\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 139.2\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 138.9\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 138.6\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 138.6(\mathrm{~d}$, $J(\mathrm{C}-\mathrm{P})=40 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}$ arom $), 138.6\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 135.8\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=39 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom $), 135.3$ $(\mathrm{d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 131.0\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 130.6\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 129.8(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9$ $\mathrm{Hz}, 2 \mathrm{CH}$ arom), 129.3 (2 CH arom), 128.9 (CH arom), $128.8(\mathrm{CH}$ arom), 128.7 (CH arom), $128.7(\mathrm{CH}$ arom $), 128.5(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=11 \mathrm{~Hz}, 2 \mathrm{CH}$ arom $), 128.3(2 \mathrm{CH}$ arom $)$, 128.2 (2 CH arom), 127.0 (2 CH arom), 127.0 (2 CH arom), 124.9 (2 CH arom), 123.3 (2 CH arom), $66.6\left(\mathrm{dd}, J(\mathrm{C}-\mathrm{P})=31,10 \mathrm{~Hz}, \mathrm{PCH}_{2}\right), 66.3(\mathrm{NCH}), 65.3(\mathrm{NCH}), 37.7$ $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $35.7\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.7\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.3\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $32.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.5$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $30.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Selected signals for cis-1a': ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}$ arom), $7.68(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}$ arom $), 7.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}$ arom), $7.34(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}$ arom), $7.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}$ arom), $7.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$ arom $), 6.99(\mathrm{~m}, 2 \mathrm{H}$, H arom), $6.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$ arom $), 6.72(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}$ arom $), 5.29(\mathrm{~m}, \mathrm{PCHH}), 4.88(\mathrm{dt}, J(\mathrm{H}-$ $H)=11.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}), 4.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{PCHH}), 3.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 3.42(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{N} H \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N} H \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 1.27(\mathrm{~s}, 9 \mathrm{H}\right.$, $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 1.19\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 1.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 162 \mathrm{MHz}\right):\right.\right.$ $\delta=169.9(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=45 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}), 73.9(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=45 \mathrm{~Hz}, \mathrm{P}-\mathrm{C})$. Elem. Anal. (\%): C 63.27 \%, H 6.16 \%, N 2.81 (calcd for $\mathrm{C}_{55} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Ru}:$ C 63.58, H 6.60, N 2.70).
$\mathrm{Ru}(\mathrm{H})\left(\mathrm{BH}_{4}\right)(\mathbf{2 c})(\mathbf{3 b})(\mathbf{7})$. A mixture of $\mathbf{1 e}(0.110 \mathrm{~g}, 0.100 \mathrm{mmol})$ and NaBH_{4} $(0.038 \mathrm{~g}, 1.00 \mathrm{mmol})$ in a toluene: $\mathrm{EtOH} 1: 1 \mathrm{mixture}(2 \mathrm{~mL})$ was heated at $60^{\circ} \mathrm{C}$ for 1 h . After this time the mixture was evaporated under reduced pressure and the residue was extracted in n-pentane ($3 \times 3 \mathrm{~mL}$). The solution was filtered through Celite and evaporated, yielding 7 as a beige solid $(0.120 \mathrm{~g}, 86 \%)$. The product is obtained as a mixture of two isomers in a $2: 1$ ratio. Below are given spectroscopic data for the major isomer. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 400 \mathrm{MHz}\right): \delta=8.53(\mathrm{dd}, J(\mathrm{H}-\mathrm{H})=10.9,8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.77$
$(\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}$ arom), $7.70(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}$ arom), $7.50(3 \mathrm{H}, \mathrm{CH}$ arom $), 7.38(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=2.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}$ arom $), 7.33(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ arom $), 7.28(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=2.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$ arom), 7.06 (m, 3H, CH arom), 6.91 (m, 9H, CH arom), $4.52(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH} H), 4.45$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}), 4.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}+\mathrm{N} H \mathrm{H}), 2.75(\mathrm{~d}, J(\mathrm{H}-\mathrm{H})=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH} H), 2.60(\mathrm{t}$, $J(\mathrm{H}-\mathrm{H})=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N} H \mathrm{H}), 1.76\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.72\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.38(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.96\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.43\left(\mathrm{bs}, 4 \mathrm{H}, \mathrm{BH}_{4}\right),-13.45(\mathrm{t}, J(\mathrm{H}-\mathrm{P})=26.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ru-H); ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}, 162 \mathrm{MHz}\right): \delta=177.5(\mathrm{~d}, J(\mathrm{P}-\mathrm{P})=77 \mathrm{~Hz}, \mathrm{P}-\mathrm{O}), 58.2(\mathrm{~d}$, $J(\mathrm{P}-\mathrm{P})=77 \mathrm{~Hz}, \mathrm{P}-\mathrm{C}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 100 \mathrm{MHz}\right): \delta=156.2\left(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=10 \mathrm{~Hz}, \mathrm{C}_{\mathrm{q}}\right.$ arom), $148.9\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 148.7\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 146.6\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 145.2\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 144.8\left(2 \mathrm{C}_{\mathrm{q}}\right.$ arom), $141.0\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 140.9\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 140.6\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 139.2\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 135.9\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 135.5\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 135.3(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=11 \mathrm{~Hz}, \mathrm{CH}$ arom $), 134.8\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 134.1\left(\mathrm{C}_{\mathrm{q}}\right.$ arom), $133.7\left(\mathrm{C}_{\mathrm{q}}\right.$ arom $), 132.8(\mathrm{~d}, J(\mathrm{C}-\mathrm{P})=9 \mathrm{~Hz}, \mathrm{CH}$ arom), $131.1(\mathrm{CH}$ arom $), 129.9(\mathrm{CH}$ arom), $129.6(\mathrm{CH}$ arom), $128.7(\mathrm{CH}$ arom), $128.4(2 \mathrm{CH}$ arom), $128.2(\mathrm{CH}$ arom), 127.1 $(\mathrm{d}, J(\mathrm{C}-\mathrm{P})=5 \mathrm{~Hz}, \mathrm{CH}$ arom $), 126.9(\mathrm{CH}$ arom $), 126.4(\mathrm{CH}$ arom $), 125.0(\mathrm{CH}$ arom $)$, $124.4(\mathrm{CH}$ arom), $122.8(\mathrm{CH}$ arom), $122.7(\mathrm{CH}$ arom), $122.5(\mathrm{CH}$ arom), $69.8(\mathrm{NCH})$, $60.6(\mathrm{NCH}), 36.5\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $35.5\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.2\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $33.9\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 33.0$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $30.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Elem. Anal. (\%): C 68.71 \%, H 7.00%, N 2.29 (calcd for $\mathrm{C}_{60} \mathrm{H}_{75} \mathrm{BN}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Ru}: \mathrm{C} 68.82$, H 7.32, N 2.68).

Representative catalytic hydrogenation of imines 5. In a glovebox, a 2 mL vial was charged with imine $5(0.5 \mathrm{mmol})$, catalyst precursor ($1.0 \mu \mathrm{~mol}$), $\mathrm{K}^{\mathrm{t}} \mathrm{BuO}(10 \mu \mathrm{~mol})$ and toluene $(0.5 \mathrm{~mL})$ placed in a parallel pressure HEL CAT18 reactor. The reactor was purged three times with H_{2}, pressurized at 4 bar of H_{2} and reacted at room temperature for 24 h . After this time the reactor was slowly depressurized, the solution obtained evaporated and conversion determined by ${ }^{1} \mathrm{H}$ NMR of the resulting residue. This residue
was purified by passing through a short pad of silica using a EtOAc/n-hexane (1:9) mixture as eluent. The resulting solution was evaporated under reduced pressure and the residue obtained analyzed by chiral HPLC to determine enantiomeric excess as described below. Alternatively, to remove unreacted imine in uncompleted reactions, the residue obtained after the catalytic hydrogenation can be dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, treated with aqueous $\mathrm{HCl}(2 \mathrm{~mL}, 2 \mathrm{M})$ and the mixture stirred for 20 minutes. NaHCO_{3} (satd, 3 mL) was added over the mixture, the organic layer extracted, dried over magnesium sulfate and concentrated. Racemic mixtures were prepared by a transfer hydrogenation reaction performed with the Shvo catalyst. ${ }^{\mathrm{S} 3}$ All amines 6 are known compounds. \boldsymbol{N}-phenyl-1phenylethylamine (6a): ${ }^{54}$ Chiralcel OJ-H, $30^{\circ} \mathrm{C}$, n-hexane/2-propanol (97:3), flow 1.0 $\mathrm{mL} / \mathrm{min}, t_{1}=20.7 \mathrm{~min}(R), t_{2}=26.6 \mathrm{~min}(S) . \quad N$-(4-methoxyphenyl)-1-(4bromophenyl)ethylamine (6b): ${ }^{54}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane/2-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=20.8 \mathrm{~min}(R), t_{2}=24.8 \mathrm{~min}(S) . N$-(4-methoxyphenyl)-1-(4trifluoromethylphenyl)ethylamine (6c): ${ }^{\mathrm{S} 4}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane/2-propanol (97:3), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=12.9 \mathrm{~min}(R), t_{2}=16.5 \mathrm{~min}(S)$. \boldsymbol{N}-(4-methoxyphenyl)-1-(3,4-dimethoxyphenyl)ethylamine (6d): ${ }^{\text {S4 }}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane/2-propanol (90:10), flow $0.5 \mathrm{~mL} / \mathrm{min}, t_{1}=27.7 \mathrm{~min}(R), t_{2}=31.9 \mathrm{~min}(S)$. \boldsymbol{N}-(4-fluorophenyl)-1phenylethylamine (6e): ${ }^{55}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane/2-propanol (98:2), flow 0.5 $\mathrm{mL} / \mathrm{min}, t_{1}=15.2 \mathrm{~min}(R), t_{2}=17.5 \mathrm{~min}(S) . \quad N$-(3,5-dimethoxyphenyl)-1phenylethylamine (6f): ${ }^{\text {S } 4}$ Chiralcel OB-H, $30^{\circ} \mathrm{C}$, n-hexane/2-propanol (99:1), flow 1.0 $\mathrm{mL} / \mathrm{min}, t_{1}=37.2 \min (S), t_{2}=54.8 \mathrm{~min}(R) . N$-(4-methoxyphenyl)-1-phenylethylamine (6g): ${ }^{\text {4 } 4}$ Chiralcel AD-H, $30^{\circ} \mathrm{C}$, n-hexane $/ 2$-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=12.8$ $\min (R), t_{2}=14.0 \min (S) . N$-(4-methoxyphenyl)-1-(3-methoxyphenyl)ethylamine (6h): ${ }^{54}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane $/ 2$-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=22.1$ $\min (R), t_{2}=25.5 \min (S) . N$-(4-methoxyphenyl)-1-(2-methylphenyl)ethylamine (6i): ${ }^{\text {S4 }}$

Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane $/ 2$-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=8.3 \mathrm{~min}(R)$, $t_{2}=9.5 \min (S) . N$-(4-methoxyphenyl)-1-(2-fluorophenyl)ethylamine ($\mathbf{6 j} \mathbf{)}:{ }^{54}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane $/ 2$-propanol ($99: 1$), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=10.5 \mathrm{~min}(R), t_{2}=12.6$ $\min (S) . N$-(4-methoxyphenyl)-1-(4-methylphenyl)ethylamine (6k): ${ }^{\text {S4 }}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane $/ 2$-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=11.6 \mathrm{~min}(R), t_{2}=13.1 \mathrm{~min}(S)$. N-phenyl-1-(4-chlorophenyl)ethylamine (61): ${ }^{\mathrm{S4}}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane/2propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=16.5 \mathrm{~min}(S), t_{2}=20.6 \mathrm{~min}(R) . N-(4-$ methoxyphenyl)-1-(2-thienyl)ethylamine (6m): ${ }^{\text {S6 }}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane/2propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=17.2 \mathrm{~min}(R), t_{2}=19.1 \mathrm{~min}(S) . N-(4-$ methoxyphenyl)-1-(1-naphthyl)ethylamine ($\mathbf{6 n}$): ${ }^{54}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}, n-$ hexane $/ 2$-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=22.9 \mathrm{~min}(R), t_{2}=31.7 \mathrm{~min}(S) . N-(4-$ methoxyphenyl)-1-(2-naphthyl)ethylamine (60): ${ }^{\text {S4 }}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}, n-$ hexane/2-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=23.6 \mathrm{~min}(R), t_{2}=28.7 \mathrm{~min}(S) . \boldsymbol{N} \mathbf{- (4 -}$ methoxyphenyl)-1-phenylpropylamine (6p): ${ }^{\mathrm{S} 4}$ Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane/2propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=10.7 \mathrm{~min}(R), t_{2}=11.0 \mathrm{~min}(S)$.

X-ray crystallographic determinations

To ascertain the coordination mode of complexes 1 (i.e. cis or trans) several Xray single crystal analysis were performed. Thus, in addition to $\mathbf{1 d}$ included in our preliminary contribution, ${ }^{\text {Sla }}$ complexes $\mathbf{1 a}, \mathbf{1 c}$ and $\mathbf{1 i}$ have been studied. Moreover, to authenticate a cis stereochemistry for the complex resulting from isomerization of $\mathbf{1 a}$ a structural determination of major isomer resulting from this reaction was performed. This analysis showed a coincident structure with that of a cis isomer of $\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 a})(\mathbf{3 a})$ detected previously from a mixture of isomers of this complex obtained by an alternative synthetic procedure. ${ }^{\text {Slb }}$

Suitable crystals for X-ray diffraction were obtained by recrystallization in $\mathrm{Et}_{2} \mathrm{O}$:n-hexane mixtures ($\mathbf{1 a}$ and cis-1a) or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:n-hexane mixtures ($\mathbf{1 c}$ and $\mathbf{1 i}$). Crystals were coated with perfluoropolyether and mounted on a glass fiber were placed in the goniometer head of a Bruker-Nonius X8 Apex-II CCD diffractometer and analyzed using graphite monochromatized Mo radiation $(\lambda(\mathrm{Mo} \mathrm{K} \alpha)=0.71073 \AA)$ and fine-sliced ω and φ scans (scan widths 0.30° to $\left.0.50^{\circ}\right)^{\text {S7a }}$ under a flow of cold nitrogen. Data obtained were reduced (SAINT) and corrected for absorption effects by the multiscan method (SADABS). ${ }^{\text {S7b }}$ The structures were solved by direct methods (SIR2002, SHELXS) and refined against all F^{2} data by full-matrix least squares techniques (SHELXL-2016/6) minimizing $w\left[F_{0}^{2}-F_{\mathrm{c}}{ }^{2}\right]^{2} .{ }^{\text {S8 }}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were included in calculated positions and allowed to ride on their carrier atoms with the isotropic temperature factors $U_{\text {iso }}$ fixed at 1.2 times (1.5 times for methyl groups) of the U_{eq} values of the respective carrier atoms. Complex 1a (CCDC: 2045798) crystallizes in triclinic space group $P 1$ with $Z=2$, observing in the unit cell two identical pairs of diastereoisomers that differ from each other only in the configuration of the stereogenic biaryl axis, together with two molecules of diethyl ether as crystallization solvent. Some dynamic disorder was observed in some fragments of the molecules that it was not necessary to model but this required some geometric restraints (DFIX instruction), the ADP restraint SIMU and the rigid bond restraint DELU were used in order to obtain more reasonable geometric and ADP values of the disordered atoms. A search for solvent accessible voids for the crystal structure of 1a using PLATON ${ }^{59}$ SQUEEZE ${ }^{\text {S10 }}$ method, showed some small volumes of potential solvents of $206 \AA^{3}$ (56 electron count) and $625 \AA^{3}$ (139 electron count), corresponding to tentative $\mathrm{Et}_{2} \mathrm{O}$ occupancy of one and three molecules respectively of diffuse crystallization solvent. The compound 1c (CCDC: 2045799) crystallizes in the
monoclinic space group $C 2$ and $\mathrm{Z}=8$, with a pair of diastereoisomers that differ from each other only in the configuration of the stereogenic biaryl axis, together with two molecules of dichloromethane as crystallization solvent in the asymmetric unit. Some dynamic disorder was observed so it was required to use some geometric restraints (DFIX instruction), the ADP restraint SIMU and the rigid bond restraint DELU were used in order to obtain more reasonable geometric and ADP values of the disordered atoms. The compound 1i (CCDC: 2045800) crystallizes in triclinic space group $P 1$ with $\mathrm{Z}=1$, observing in the unit cell a pair of diastereoisomers that differ from each other only in the configuration of the stereogenic biaryl axis, together with three molecules of dichloromethane as crystallization solvent. Some methyl groups were observed disordered, as well as two of dichloromethane molecules, all of them modeled in two components and their occupation coefficients refined. Both positional and dynamic disorder required large geometric restraints (DFIX instruction), the ADP restraint SIMU and the rigid bond restraint DELU were used in order to obtain more reasonable geometric and ADP values of the disordered atoms. Moreover, a search for solvent accessible voids for the crystal structure of 1i using PLATON SQUEEZE method, showed some small volumes of potential solvents of $94 \AA^{3}$ (24 electron count) and $235 \AA^{3}$ (80 electron count), were 42 electron count are expected for $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ full occupancy. From this ratio, tentative $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ occupancy of 0.57 of and two $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecules can be calculated respectively of diffuse crystallization solvents.

As an unusual occurrence, compound cis-1a crystallizes in the $\mathrm{Et}_{2} \mathrm{O}: n$-hexane mixture in the form of two types of yellow prisms with slight differences between them, both morphologically and by colorimetric analysis under polarized light microscopy. A crystal from the predominant batch (cis-1a-M; CCDC: 2045801) crystallizes in the monoclinic system, Sohncke space group $P 2_{1}$ with $\mathrm{Z}=2$, while a crystal from the minority
batch (cis-1a-min; CCDC: 2045802) crystallizes in the tetragonal system in the enantiomorphic space group $P 4_{12} 2_{1}$ with $Z=8$. Only a single identical stereoisomer of the Ru (II) complex with the same absolute configuration is observed in the asymmetric unit for both crystals. A search for solvent accessible voids for the crystal structure of cis-1a-M using PLATON SQUEEZE method, showed two small volumes of potential solvents of $207 \AA^{3}$ (42 electron count), were 42 electron count are expected for an $\mathrm{Et}_{2} \mathrm{O}$ molecule with full occupancy. From this ratio, tentative occupancy of an $\mathrm{Et}_{2} \mathrm{O}$ molecule can be calculated in both voids of diffuse crystallization. While a search for solvent accessible voids for the crystal structure of cis-1a-min using PLATON SQUEEZE method did not show voids with enough volume and electron counts to occupy solvent to mention. The corresponding CIF data represent SQUEEZE treated structures with the solvent molecules handling as a diffuse contribution to the overall scattering, without specific atom position and excluded from the structural model. The SQUEEZE results were automatically included by SHELXL (ABIN instruction) to the end of the CIF files.

As preliminary reported in the X-ray diffraction study of $\mathbf{1 d},{ }^{\text {Sla }}$ complexes 1a, $\mathbf{1 c}$ and $\mathbf{1 i}$ show two diastereomers in the crystal with a trans stereochemistry, differing in the configuration of the biaryl stereogenic axis. Moreover, the structures of the two diastereomers are nearly enantiomeric each other thus conforming a pseudoracemate. ${ }^{\text {S11 }}$ In this regard, refinement in a centrosymmetric space group (shown in alerts in the checkCIF reports; $P-1$ for 1 a, $C 2 / c$ for 1 c and $P-1$ for $1 \mathbf{1}$) would involve the presence of enantiomers of complexes $\mathbf{1}$, which is not compatible with the enantiopurity of diamines used. ${ }^{\text {S }}{ }^{2}$

Among the new determinations of trans complexes 1, that of 1i led to a structure of satisfactory quality (as it was the case of $\mathbf{1 d}$). By the opposite, caused by the presence of disordered solvent and a relatively high number of weak reflections, the analysis of 1a
and 1c led to results of lower quality. Moreover, due to the high solubility of these compounds difficulties on obtaining crystalline samples were experienced. Best results were finally obtained using n-hexane along with tiny amounts of a cosolvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ or $\mathrm{Et}_{2} \mathrm{O}$). Upon the obtaining of suitable samples for X-ray diffraction, several crystals were examined until reaching an acceptable quality data. It seems that the difficulties posed by 1a and 1c are associated to the trans stereochemistry of these complexes and their easy atropisomerization of the biaryl fragment. This phenomenon is not that easy in the cis isomers (see main text) and the structural determination of cis-1a led to high quality results. As a result of the insufficient quality data for $\mathbf{1 a}$ and $\mathbf{1 c}$, along with the additional difficulties due to the presence of diastereomers in the crystal, ${ }^{513}$ a deviation of the Flack parameter was observed for these complexes. By the opposite, the expected close to zero values were obtained for $\mathbf{1 i}$ and cis-1a (as well as for $\mathbf{1 d}$). Notwithstanding that, a reliable configuration of the biaryl moiety can be done considering the known configuration of the diamine.

A summary of cell parameters, data collection, structures solution, and the refinement of crystal structures are provided below (Figures S1-S4 and Tables S1-S4). As well, cif files for $\mathbf{1 a}, \mathbf{1 c}, \mathbf{1} \mathbf{i}$, cis-1a-M and cis-1a-min have been uploaded as a part of the supplementary material.

Figure S1. ORTEP view of diastereomers of complex 1a observed in the crystal lattice: (Sax)-trans-1a (left) and ($R_{a x}$)-trans-1a (right).

Table S1. Crystal data and structure refinement for 1a.

Empirical formula	$\begin{aligned} & \mathrm{C}_{114} \mathrm{H}_{146} \mathrm{Cl}_{4} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{P}_{4} \mathrm{Ru}_{2} \\ & {\left[2\left(\mathrm{C}_{55} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Ru}\right), \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right]} \end{aligned}$
Formula weight	2152.16
Temperature	193(2) K
Wavelength	0.71073 £
Crystal system	Triclinic
Space group	P1
Unit cell dimensions	$a=16.268(3) \AA \quad \alpha=87.715(10)^{\circ}$.
	$\mathrm{b}=17.763(3) \AA \quad \beta=81.350(10)^{\circ}$.
	$\mathrm{c}=23.082(4) \AA \quad \gamma=66.621(9)^{\circ}$.
Volume	$6051.5(18) \AA^{3}$
Z	2
Density (calculated)	$1.181 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.441 \mathrm{~mm}^{-1}$
F(000)	2260
Crystal size	$0.400 \times 0.150 \times 0.100 \mathrm{~mm}^{3}$
Theta range for data collection	1.528 to 25.250°.
Index ranges	$-19<=\mathrm{h}<=19,-21<=\mathrm{k}<=21,-27<=\mathrm{l}<=27$
Reflections collected	88132
Independent reflections	$43430[\mathrm{R}(\mathrm{int})=0.0410]$
Completeness to theta $=25.242^{\circ}$	99.8 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7461 and 0.6575
Refinement method	Full-matrix-block least-squares on F^{2}
Data / restraints / parameters	43430 / 4119 / 2387
Goodness-of-fit on F^{2}	1.062
Final R indices [$\mathrm{I}>2$ sigma(I) $]$	$\mathrm{R} 1=0.0836, \mathrm{wR} 2=0.2425$
R indices (all data)	$\mathrm{R} 1=0.1214, w R 2=0.2708$
Absolute structure parameter	0.246(15)
Extinction coefficient	n / a
Largest diff. peak and hole	2.573 and -2.038 e. \AA^{-3}

Figure S2. ORTEP view of diastereomers of complex 1c observed in the crystal lattice: ($S_{a x}$)-trans-1c (left) and ($R_{a x}$)-trans-1c (right).

Table S2. Crystal data and structure refinement for $\mathbf{1 c}$.

Empirical formula	$\begin{aligned} & \mathrm{C}_{50} \mathrm{H}_{58} \mathrm{Cl}_{4} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Ru} \\ & {\left[\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{Ru}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right]} \end{aligned}$
Formula weight	1071.79
Temperature	193(2) K
Wavelength	0.71073 £
Crystal system	Monoclinic
Space group	C2
Unit cell dimensions	$a=29.604(14) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=12.869(4) \AA \quad \beta=114.68(2)^{\circ}$.
	$\mathrm{c}=29.396(14) \AA \quad \gamma=90^{\circ}$.
Volume	10175(8) \AA^{3}
Z	8
Density (calculated)	$1.399 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.628 \mathrm{~mm}^{-1}$
F(000)	4432
Crystal size	$0.100 \times 0.080 \times 0.050 \mathrm{~mm}^{3}$
Theta range for data collection	1.382 to 25.247°.
Index ranges	$-32<=\mathrm{h}<=35,-10<=\mathrm{k}<=15,-27<=\mathrm{l}<=35$
Reflections collected	48983
Independent reflections	$14744[\mathrm{R}(\mathrm{int})=0.0951]$
Completeness to theta $=25.242^{\circ}$	98.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.9121
Refinement method	Full-matrix-block least-squares on F^{2}

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

14744 / 1925 / 1073
1.015
$\mathrm{R} 1=0.0617, \mathrm{wR} 2=0.1278$
$R 1=0.1347, w R 2=0.1524$
0.32(7)
n/a
0.963 and -0.658 e. \AA^{-3}

Figure S3. ORTEP view of diastereomers of complex 1i observed in the crystal lattice: $\left(S_{a x}\right)$-trans-1i (left) and ($R_{a x}$)-trans-1i (right).

Table S3. Crystal data and structure refinement for $\mathbf{1 i}$.

Empirical formula	$\mathrm{C}_{123} \mathrm{H}_{142} \mathrm{Cl}_{10} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}_{4} \mathrm{Ru}_{2}$	
	$\left[2\left(\mathrm{C}_{60} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Ru}\right), 3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right]$	
Formula weight	2528.92	
Temperature	$173(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal system	Triclinic	
Space group	P 1	$\alpha=89.2120(10)^{\circ}$.
Unit cell dimensions	$\mathrm{a}=13.3642(3) \AA$	$\beta=76.7380(10)^{\circ}$.
	$\mathrm{b}=15.0349(3) \AA$	$\gamma=66.7710(10)^{\circ}$.
	$\mathrm{c}=18.4697(4) \AA$	
Volume	$3307.09(13) \AA \AA^{3}$	
Z	1	
Density (calculated)	$1.270 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.535 \mathrm{~mm}{ }^{-1}$	
F(000)	1310	
Crystal size	$0.450 \mathrm{x} 0.250 \mathrm{x} 0.200 \mathrm{~mm}^{3}$	
Theta range for data collection	2.243 to 25.248°.	

Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
$-16<=\mathrm{h}<=16,-18<=\mathrm{k}<=18,-22<=\mathrm{l}<=22$
102854
$23788[R($ int $)=0.0243]$
99.9 \%

Semi-empirical from equivalents
1.0000 and 0.9315

Full-matrix least-squares on F^{2}
23788 / 761 / 1540
1.052
$\mathrm{R} 1=0.0317, \mathrm{wR} 2=0.0901$
$\mathrm{R} 1=0.0361, \mathrm{wR} 2=0.0926$
0.044(8)
n/a
0.745 and -0.358 e. \AA^{-3}

Figure S4. ORTEP view of complex diastereomers of complex cis-1a.

Table S4. Crystal data and structure refinement for cis-1a (cis-1a-M)

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
$\mathrm{C}_{55} \mathrm{H}_{68} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}_{2} \mathrm{Ru}$
1039.02

193(2) K
0.71073 Å

Monoclinic
P2
$a=14.485(3) \AA \quad \alpha=90^{\circ}$.
$b=13.276(3) \AA \quad \beta=104.344(6)^{\circ}$.
$\mathrm{c}=16.008(4) \AA \quad \gamma=90^{\circ}$.

Volume
Z

Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
2982.4(12) \AA^{3}

2
$1.157 \mathrm{Mg} / \mathrm{m}^{3}$
$0.444 \mathrm{~mm}^{-1}$
1088
$0.400 \times 0.150 \times 0.100 \mathrm{~mm}^{3}$
1.451 to 25.248°.
$-17<=\mathrm{h}<=17,-15<=\mathrm{k}<=15,-19<=\mathrm{l}<=19$
38350
$10789[\mathrm{R}(\mathrm{int})=0.0237]$
100.0 \%

Semi-empirical from equivalents
0.7461 and 0.6664

Full-matrix least-squares on F^{2}
10789 / 151 / 598
1.219
$\mathrm{R} 1=0.0266, \mathrm{wR} 2=0.0702$
$\mathrm{R} 1=0.0284, \mathrm{wR} 2=0.0708$
-0.022(6)
n/a
0.701 and $-0.408 \mathrm{e} . \AA^{-3}$

Simulation of NMR spectra

Selected ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of studies performed at different temperatures with 1a and 1d have been simulated with dnmr software included in Topspin program (version 4.0.9). For each compound the spectrum registered at $-90^{\circ} \mathrm{C}$ has been simulated to validate the method and to obtain chemical shift, coupling constants and LB values to use as a starting point in the simulation of the spectrum at the temperature of coalescence. In both cases the phosphine region has been selected for the analysis as it shows a clearer coalescence point. Regarding the full collection of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra registered at different temperatures it can be found in the main text in the case of $\mathbf{1 a}$ or in the supplementary material of our preliminary communication in the case of $\mathbf{1 d} .{ }^{\text {Sla }}$
a) 1a (Figure S5). Spectrum at $-90{ }^{\circ} \mathrm{C}$ (fitting region: 70.3-66.8 ppm). Ratio M/m $=0.70 / 0.30 . \delta_{\mathrm{M}}=69.47 \mathrm{ppm}\left(J_{\mathrm{PP}}=45.9 \mathrm{~Hz}\right), \delta_{\mathrm{m}}=67.59 \mathrm{ppm}\left(J_{\mathrm{PP}}=45.5 \mathrm{~Hz}\right) . \mathrm{LB}=12.0$ Hz. $\mathrm{k}=31.2 \mathrm{~s}^{-1}$ (93.5 \% overlap). Spectrum at $-70{ }^{\circ} \mathrm{C}$ (coalescence, fitting region: 71.0$66.5 \mathrm{ppm})$. Ratio M $/ \mathrm{m}=0.72 / 0.28 . \delta_{1}=69.77 \mathrm{ppm}\left(J_{\mathrm{PP}}=45.9 \mathrm{~Hz}\right), \delta_{2}=68.01 \mathrm{ppm}\left(J_{\mathrm{PP}}\right.$ $=45.5 \mathrm{~Hz}) . \mathrm{LB}=12.0 \mathrm{~Hz} . \mathrm{k}=533 \mathrm{~s}^{-1}$ (93.4 \% overlap). Upon the k value at $-70^{\circ} \mathrm{C} \mathrm{a}$ value of $\Delta \mathrm{G}^{\neq}=9.2 \mathrm{kcal} \mathrm{mol}^{-1}$ has been calculated.

Figure S5. Overlapping of experimental and simulated of the phosphine región of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 1 a registered at $-90^{\circ} \mathrm{C}$ (left) and at $-70^{\circ} \mathrm{C}$ (coalescence, right).
b) $\mathbf{1 d}$ (Figure S6). Spectrum at - $90{ }^{\circ} \mathrm{C}$ (fitting region: 39.0-35.0 ppm). Ratio M/m $=0.64 / 0.36 . \delta_{\mathrm{M}}=37.29 \mathrm{ppm}\left(J_{\mathrm{PP}}=70.2 \mathrm{~Hz}\right), \delta_{\mathrm{m}}=36.87 \mathrm{ppm}\left(J_{\mathrm{PP}}=70.8 \mathrm{~Hz}\right) . \mathrm{LB}=8.0$ Hz. k $=0.394 \mathrm{~s}^{-1}$ (97.3% overlap). Spectrum at $-65{ }^{\circ} \mathrm{C}$ (coalescence, fitting region: 39.0$35.0 \mathrm{ppm})$. Ratio $\mathrm{M} / \mathrm{m}=0.62 / 0.38 . \delta_{\mathrm{M}}=37.38 \mathrm{ppm}\left(J_{\mathrm{PP}}=70.2 \mathrm{~Hz}\right), \delta_{\mathrm{m}}=36.83 \mathrm{ppm}\left(J_{\mathrm{PP}}\right.$ $=70.8 \mathrm{~Hz}) . \mathrm{LB}=12.0 \mathrm{~Hz} . \mathrm{k}=80.5 \mathrm{~s}^{-1}$ (97.3% overlap). Upon the k value at $-65^{\circ} \mathrm{C}$ a value of $\Delta \mathrm{G}^{\neq}=10.2 \mathrm{kcal} \mathrm{mol}^{-1}$ has been calculated.

Figure S6. Overlapping of experimental and simulated of the phosphine región of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{1 d}$ registered at $-90^{\circ} \mathrm{C}$ (left) and at $-65^{\circ} \mathrm{C}$ (coalescence, right).

Supplementary computational information

General considerations. Calculations were performed with Gaussian $09^{\text {S14 }}$ at the DFT level, using the Becke Three-Parameter functional ${ }^{\text {S15 }}$ with the non-local correlation by Perdew and Wang ${ }^{\text {S16 }}$ (B3PW91) and the D3 version of Grimme's dispersion with Becke-Johnson damping (GD3BJ). ${ }^{\mathrm{S} 17} \mathrm{H}, \mathrm{C}, \mathrm{P}, \mathrm{Cl}$ and O atoms were represented with the $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set ${ }^{\mathrm{S} 18}$ whereas Ru atoms were described by the Stuttgart/Dresden Effective Core Potential and the associated basis set as implemented in Gaussian 09 (BS1). ${ }^{\text {S19 }}$ Electronic energies of TS1-d1R-RP-5a and TS1-d3S-SP-5a were also calculated using $6-311++G(2 d, p)$ basis set for the main group elements and def2-QZVP basis set for $\mathrm{Ru}(\mathrm{BS} 2) .{ }^{\mathrm{S} 20}$ All molecular geometries were optimized within the SMD continuum solvent (toluene) model ${ }^{\text {S21 }}$ without any geometry constrains using BS1. Frequency calculations were performed at the same level of theory to characterize the stationary points as minima (no imaginary frequencies) or transition states (one imaginary frequency), as well as to calculate free energy (G) corrections. The two minima connected by a given transition state were confirmed from IRC analysis unless otherwise stated. ${ }^{\text {S22 }}$ Energies of calculated structures are given in the Table S5. Representation of non covalent interactions were performed with Multiwfn software. ${ }^{\text {S23 }}$ Molecular
representations were made either with the UCSF Chimera ${ }^{\mathrm{S} 24}$ or $\mathrm{VMD}^{\mathrm{S} 25}$ packages. A list of coordinates for computed structures is provided in a separate file, while the complete free energy profile for the preferred enantiomer is provided in Figure S7. Application of the energetic span model developep by Kozuch and Shaik ${ }^{\text {S26a }}$ to this cycle using the AUTOF program ${ }^{\text {S26b }}$ indicated that the intermediate (TDI) and transition state (TDTS) determining the rate of the reaction are $\mathbf{a 1 R} \mathbf{R} \mathbf{R}-\mathbf{6 a}$ and TS4a, respectively. Moreover, the energetic span of the reaction, which can be considered as the apparent activation energy of the cycle, corresponds to the Gibbs energy difference between these species, calculated as $17.5 \mathrm{kcal} \mathrm{mol}^{-1}$ in the present cycle.

Table S5. E and G values (a.u.) for computed complexes and TS ${ }^{\text {a }}$

Entry	Compound	E (RB3PW91)	G (298K)
1	ctR	-4169.732213	-4168.707794
2	ctS	-4169.731682	-4168.708002
3	c1R	-4169.745153	-4168.716225
4	c1S	-4169.732730	-4168.703367
5	c2R	-4169.722304	-4168.698571
6	c2S	-4169.726224	-4168.698703
7	c3R	-4169.734054	-4168.706410
8	c3S	-4169.744516	-4168.715751
9	c4R	-4169.724844	-4168.696948
10	c4S	-4169.720121	-4168.693014
11	atrop-TS1 $\left(i 29 \mathrm{~cm}^{-1}\right)$	-4169.720310	-4168.692926
12	conf-1	-4169.724442	-4168.699461
13	atrop-TS2 $\left(i 54 \mathrm{~cm}^{-1}\right)$	-4169.721834	-4168.696512
14	conf-2	-4169.724035	-4168.698654
15	atrop-TS3 $\left(i 21 \mathrm{~cm}^{-1}\right)$	-4169.722829	-4168.696892
16	conf-3	-4169.728457	-4168.705202
17	c1R'	-4361.448721	-4360.368976
18	c3S'	-4361.446487	-4360.366396
19	ctR'	-4361.435625	-4360.360083
20	ctS,	-4361.435754	-4360.360707
21	ctR"	-4361.443257	-4360.367187
22	ctS"	-4361.441916	-4360.369616

23	dtR	-3250.496688	-3249.455896
24	dtS	-3250.496352	-3249.455902
25	d1R	-3250.512453	-3249.472431
26	d1S	-3250.503487	-3249.460593
27	d2R	-3250.497164	-3249.458786
28	d2S	-3250.499970	-3249.460392
29	d3R	-3250.503081	-3249.459795
30	d3S	-3250.514623	-3249.470825
31	d4R	-3250.498082	-3249.458072
32	d4S	-3250.496173	-3249.455923
33	d1R'	-3442.217508	-3441.124332
34	d3S'	-3442.217396	-3441.124214
35	dtR'	-3442.199896	-3441.113818
36	dtS'	-3442.198963	-3441.113040
37	dtR"	-3442.206191	-3441.118130
38	dtS"	-3442.205896	-3441.117635
39	a1R	-3249.296360	-3248.275155
40	a1R'	-3249.249679	-3248.228432
41	a1S	-3249.288634	-3248.268215
42	a2R	-3249.294975	-3248.276363
43	a2S	-3249.296883	-3248.278721
44	a3R	-3249.285561	-3248.264013
46	a3S	-3249.292569	-3248.269921
47	a3S'	-3249.259235	-3248.234971
48	a4R	-3249.293588	-3248.276090
49	a4S	-3249.290484	-3248.272247
50	a5R	-3249.282169	-3248.264431
51	a5S	-3249.287239	-3248.269607
52	a6R	-3249.289698	-3248.273388
53	a6S	-3249.282676	-3248.267068
54	5a	-595.921941	-595.730540
55	d1R-RP-5a	-3846.477645	-3845.214367
56	d1R-SP-5a	-3846.474475	-3845.214155
57	d1R-RH-5a	-3846.467395	-3845.204433
58	d1R-SH-5a	-3846.470325	-3845.210078
59	d3S-RP-5a	-3846.475862	-3845.214145
60	d3S-SP-5a	-3846.477883	-3845.214083
61	d3S-RH-5a	-3846.469400	-3845.207677
62	d3S-SH-5a	-3846.461527	-3845.202508
63	dtR-RPC-5a	-3846.463524	-3845.203392

64	dtR-SPC-5a	-3846.464457	-3845.205151
65	dtR-RPO-5a	-3846.463524	-3845.203410
66	dtR-SPO-5a	-3846.447390	-3845.189589
67	dtS-RPC-5a	-3846.467244	-3845.206520
68	dtS-SPC-5a	-3846.454271	-3845.192600
69	dtS-RPO-5a	-3846.455853	-3845.193584
70	dtS-SPO-5a	-3846.460973	-3845.200767
71a	TS1-d1R-RP-5a ($4409 \mathrm{~cm}^{-1}$)	-3846.468490	-3845.204367
71 b	TS1-d1R-RP-5a ${ }^{\text {a }}$	-3847.296958	
72	TS1-d1R-SP-5a ($i 348 \mathrm{~cm}^{-1}$)	-3846.461473	-3845.199050
73	TS1-d1R-RH-5a (i550 cm^{-1})	-3846.444480	-3845.183101
74	TS1-d1R-SH-5a (i444 cm ${ }^{-1}$)	-3846.455056	-3845.195441
75	TS1-d3S-RP-5a (i676 cm ${ }^{-1}$)	-3846.461438	-3845.196500
76a	TS1-d3S-SP-5a (i684 cm ${ }^{-1}$)	-3846.465501	-3845.201753
76 b	TS1-d3S-SP-5a ${ }^{\text {a }}$	-3847.294123	
77	TS1-d3S-RH-5a ($i 540 \mathrm{~cm}^{-1}$)	-3846.458929	-3845.193864
78	TS1-d3S-SH-5a (i647 cm^{-1})	-3846.441976	-3845.177430
79	TS1-dtR-RPC-5a ($3324 \mathrm{~cm}^{-1}$)	-3846.457750	-3845.195385
80	TS1-dtR-SPC-5a ($i 343 \mathrm{~cm}^{-1}$)	-3846.454256	-3845.190503
81	TS1-dtR-RPO-5a (i324 cm $\left.{ }^{-1}\right)^{*}$	-3846.457750	-3845.195386
82	TS1-dtR-SPO-5a ($4439 \mathrm{~cm}^{-1}$)	-3846.432553	-3845.170796
83	TS1-dtS-RPC-5a (i336 cm ${ }^{-1}$)	-3846.458956	-3845.198117
84	TS1-dtS-SPC-5a (i840 cm ${ }^{-1}$)	-3846.436044	-3845.174616
85	TS1-dtS-RPO-5a (i820 cm ${ }^{-1}$)	-3846.435913	-3845.175414
86	TS1-dtS-SPO-5a ($i 330 \mathrm{~cm}^{-1}$)	-3846.452501	-3845.192108
87	ag-pro-R	-3846.470731	-3845.204925
88	ag-pro-S	-3846.467548	-3845.198686
89	ip-pro-R	-3846.479450	-3845.210363
90	ip-pro-S	-3846.476294	-3845.203654
91	TS2-pro-R (i1177 cm ${ }^{-1}$)	-3846.472579	-3845.208218
92	TS2-pro-S (i1114 cm ${ }^{-1}$)	-3846.469423	-3845.203004
93	a1R-R-6a	-3846.484946	-3845.219891
94	a3S-S-6a	-3846.483792	-3845.218032
95	N1R	-3846.491325	-3845.217047
96	H_{2}	-1.177160	-1.178522
97	(R)-6a	-597.137158	-596.921529
98	TS3a ($i 87 \mathrm{~cm}^{-1}$)	-3847.651445	-3846.375137
99	h1R-R-6a-l	-3847.654863	-3846.371134
100	TS3b ($i 331 \mathrm{~cm}^{-1}$)	-3847.650025	-3846.371572
101	h1R-R-6a-t	-3847.653710	-3846.373304

102	TS4a $\left(i 1195 \mathrm{~cm}^{-1}\right)$	-3847.646191	-3846.370443
103	d1R-R-6a	-3847.693728	-3846.409721
104	TS3c $\left(i 385 \mathrm{~cm}^{-1}\right)$	-3847.630072	-3846.349038
105	d1R-R-6a $\left(2^{\text {nd }}\right.$ conformer $)$	-3847.693008	-3846.404834
106	TS3d $\left(i 358 \mathrm{~cm}^{-1}\right)$	-3250.471995	-3249.437988
107	h1R-I	-3250.473256	-3249.435027
108	TS3e $\left(i 3048 \mathrm{~cm}^{-1}\right)$	-3250.466654	-3249.433148
109	h1R-t	-3250.471139	-3249.434298
110	TS4b $\left(i 886 \mathrm{~cm}^{-1}\right)$	-3250.462141	-3249.427076

${ }^{\bar{a}}$ Calculated with BS1 unless otherwise stated. ${ }^{\mathrm{b}}$ Calculated with BS2 (only E).

Figure S7. Complete free energy profile ($\Delta \mathrm{G}$ in $\mathrm{kcal} \mathrm{mol}^{-1}$ referred to $\mathbf{d} \mathbf{1 R}+\mathbf{5 a}+\mathrm{H}_{2}$) for the preferred enantiomer.

Interconversion between atropisomers of 1a. Atropisomerization of 1a causes not only changes in the biaryl unit (Figure S8), but conformational changes in the backbone of the P-OP ligand as well. This dynamic process can be analyzed by examining
values of P-Ru-P'-O (P: phosphine phosphorus, P^{\prime} : phosphite phosphorus), $\mathrm{P}^{\mathrm{\prime}}$-Ru-P-C and P-C-O-P' dihedral angles (Table S6). Thus, the dynamic process can be divided in several steps. Starting from ctR, a scan of the atropisomerization of the biaryl fragment led to atrop-TS1 (Figure S9), with a $\Delta \mathrm{G}^{\neq}$of $9.3 \mathrm{kcal} / \mathrm{mol}$ above $\mathbf{c t R}$. This TS is characterized by a biaryl dihedral angle of 1.9 degrees. In this case, IRC analysis failed and conformers around atrop-TS1 were located by very small variations following the vector corresponding to the imaginary frequency around this TS followed by subsequent optimization to reach the two minima connected by atrop-TS1. Following this procedure, Conf-1, which already displays a S_{ax} configuration, was located. The remaining pathway towards $\mathbf{c t S}$ is composed by two additional conformers (Conf-2 and Conf-3) as well as two transition states (atrop-TS2 and atrop-TS3). Worth to note, a very small barrier was detected in the evolution of Conf-3 to $\mathbf{c t S}$ and no transition state was located for this step.

Figure S8. Schematic representation of the conformational changes of the $\mathrm{Ru}(\mathrm{P}-\mathrm{OP})$ fragment of $\mathbf{1 a}$ during the atropisomerization process.

Table S6. Selected dihedral angles and calculated energies of conformers generated along

Structure	$\varphi^{\text {b }}$	P-Ru-P'-O	P'-Ru-P-C	P-C-O-P ${ }^{\text {' }}$	$\Delta \mathrm{E}^{\text {c }}$	$\Delta \mathrm{G}^{\mathrm{c}}$
ctR	-49.1	24.3	-32.4	-23.5	8.1	0.0
atrop-TS1	1.9	15.3	-28.3	-32.9	7.5	9.3
Conf-1	28.3	6.6	-23.9	-40.4	5.2	5.3
atrop-TS2	29.2	15.1	-11.0	6.0	6.5	7.1

Conf-2	28.6	-5.8	22.3	37.8	5.1	5.7
atrop-TS3	32.7	-19.4	33.1	35.3	5.9	6.8
Conf-3		40.2	-23.7	32.7	25.6	2.4
ctS	53.8	-23.3	32.1	25.0	0.3	-0.1

${ }^{\text {a Dihedral angles in degrees. P and P' denote phosphorus atoms of phosphine and phosphite ligands, }}$ respectively. ${ }^{\text {b }}$ Dihedral angle determined by $\mathrm{C}^{1}-\mathrm{C}^{4}$ carbon atoms of the biaryl unit. ${ }^{\text {c }}$ Relative energies in $\mathrm{kcal} / \mathrm{mol}$ relative to $\mathbf{c t R}$. ${ }^{\mathrm{d}}$ From Conf-3, barrierless evolution led to ctS.
(a)

(c)

(b)

(d)

(e)

Figure S9. Structure of conformers of 1a participating in the atropisomerization of the biaryl fragment: ctR (a), ctS (b), atrop-TS1 (c), atrop-TS2 (d), atrop-TS3 (e).

Generation of amide complexes. For the study of structures of amido-hydride complexes of formulation $\operatorname{Ru}(\mathrm{H})\left\{(S, S)-\mathrm{NH}-\mathrm{CHPh}-\mathrm{CHPh}-\mathrm{NH}_{2}\right\}(\mathbf{2 a})$, it has been considered that hydrogen addition along the Ru-NH bond to these complexes produce corresponding dihydrides $\mathrm{Ru}(\mathrm{H})_{2}(\mathbf{2 a})(\mathbf{3 a})$ with a small structural rearrangement. Upon these considerations we have examined the formal abstraction of a hydride ligand and a NH_{2} proton located in a near synperiplanar position to the hydride to give an amidohydride complex which was then further optimized. Using this procedure compounds $\mathbf{a 1 R}, \mathbf{a} 2 \mathbf{R}$ and $\mathbf{a 1 R}$ ' were generated from d1R (Figure S10a). These structures can be described as distorted trigonal bipyramidal (a1R, a2R) or square pyramid (a1R') structures. Likewise, a3S, a4S and a3S' were obtained from d1S. Worth to note distorted square pyramid structures were less stable than trigonal bipyramidal ones. In the latter, the amino group occupies one apical position and the amido ligand an axial one, while it
seems that different combinations of the ancillary ligands provide structures with comparable energies. For the sake of completeness the whole set of trigonal bipyramidal structures were calculated including both atropisomers of each type (Figure S10b).
(a)

a2R (- $\left.\mathrm{H}^{\dagger} \mathrm{H}^{5}, 1.5\right)$

a1R' $\left(-H^{2} H^{3}, 31.5\right)$

d3S

a3S (- $\left.\mathrm{H}^{\wedge} \mathrm{H}^{5}, 5.5\right)$

a4S $\left(-\mathrm{H}^{\top} \mathrm{H}^{3}, 4.1\right)$

a3S' (-H² $\left.\mathrm{H}^{\ominus}, 27.4\right)$
(b)

$\mathrm{a} 2 \mathrm{R}(1.5, \mathrm{~d} 1 \mathrm{R})$
$\mathrm{a} 2 \mathrm{~S}(0.0, \mathrm{~d} 1 \mathrm{~S})$

a3S (5.5, d3S)

Figure S10. Generation of amido-hydride complexes by formal abstraction of a hydride and a NH_{2} synperiplanar proton of d1R or d3S (a). Structures of amido-hydride complexes of types a1-a6, including both atropisomers for each type (b). Free energies in $\mathrm{kcal} \mathrm{mol}^{-1}$ referred to $\mathbf{a} 2 \mathbf{S}$.

Intermediate agostic complexes in the hydride transfer step. IRC analysis from TS1-d1R-RP-5a and TS1-d3S-SP-5a lead in the product direction to ion pair species (ag-pro-R and ag-pro-S, respectively) stabilized by a strong agostic interaction, in which the $\mathrm{Ru} \cdots \mathrm{H}-\mathrm{C}$ fragment is characterized by a relatively short $\mathrm{Ru}-\mathrm{H}$ distance (1.903 and $1.899 \AA$, Figure S11) and a long C-H one (1.228 and 1.223 \AA). Thus, no complete hydride transfer is observed in these species. A scan of the lengthening of the $\mathrm{Ru} \cdots \mathrm{H}$ distance shows a very small grow in energy (Figure S12), being $\Delta \mathrm{E}=0.15 \mathrm{kcal}$ mol^{-1} at $1.963 \AA$. After this point, energy abruptly decreases and a minimum is found at $2.038 \AA$. Minimization of this structure led to ip-pro- \boldsymbol{R} structure, which is characterized by a weaker agostic interaction with $\mathrm{Ru} \cdots \mathrm{H}$ distance of $2.031 \AA$ and C-H one of $1.201 \AA$. An analogous behavior was observed in the case of ag-pro-S, leading to corresponding
ip-pro-S structure. All attempts to find a TS from the maximum of the scan were unsuccessful.

ag-pro-R

Figure S11. Selected distances of ion pair species (top). Structures of ag-pro-R (bottom left) and ag-pro-S (bottom right) complexes.

Figure S12. Energy profile scan of of the Ru-H distance from ag-pro-R (left) and ag-pro-S (right) structures to ip-pro-R and ip-pro-S, respectively.

Conversion of ip-pro-R in N1R. Several attempts have been made to locate the transition state in the conversion of ip-pro-R into N1R by the scan of different structural parameters (e.g. release of the $\mathrm{Ru}-\mathrm{H}$ distance, approach of N product to the metal). Among them, opening of the N-C-H angle (α, Figure S13) showed a clean scan starting at ip-pro-R and finishing at $\mathbf{N 1 R}$. This shows an estimation of $\Delta \mathrm{E}=6.4 \mathrm{kcal} \mathrm{mol}^{-1}$ over ip-pro-R. Use of the maximum of the scan to locate the corresponding TS was not successful. A frequency calculation of this maximum showed one imaginary frequency
($i 74 \mathrm{~cm}^{-1}$) and a free energy value of $4.0 \mathrm{kcal} \mathrm{mol}^{-1}$ over the starting ion-pair could be estimated.

Figure S13. Energy profile of the scan of α angle from ip-pro-R. (E values are referenced to ip-pro-R).

Further comments on the hydrogen activation pathways from ip-pro-R and

 a1R. To complement the activation pathway from a1R-R-6a shown in the main text (Figure 14), below are provided more details in the hydrogenation pathways by ip-pro- \boldsymbol{R} and $\mathbf{a} 1 \mathbf{R}$. Free energy and electronic energy values are referenced to $\mathbf{a} 1 \mathbf{R}+\boldsymbol{R} \mathbf{- 6 a}+\mathrm{H}_{2}$.As mentioned, TS3c shows a significantly free energy barrier, while corresponding IRC analysis in the product direction leads to an adduct between d1R and $R-\mathbf{6 a}$ (Figure S14). From a scan of the approaching of H_{2} to ip-pro- \boldsymbol{R} complex it is possible to locate a hydrogen complex (ip-pro- $\boldsymbol{R}-\mathbf{H}_{\mathbf{2}} ; \Delta \mathrm{G}=1.4 \mathrm{kcal} \mathrm{mol}^{-1}, \Delta \mathrm{E}=-29.4$ kcal mol^{-1}, Figure S15), being $14.9 \mathrm{kcal} \mathrm{mol}^{-1}$ in free energy below TS3c. Moreover, an inspection of the H_{2} activation in this compound shows a barrier lower than $1 \mathrm{kcal} / \mathrm{mol}$ leading to the dihydride amine complex. Therefore, most of the cost in accessing TS3c seems associated to the separation of the components of the ion pair by a slightly coordinating H_{2}. Worth to note, comparison between structures of ip-pro- \boldsymbol{R} and ip-pro-$\boldsymbol{R}-\mathbf{H}_{\mathbf{2}}$ indicates a shorter C-H (1.110 vs $1.201 \AA$) and a longer C-N (1.448 vs $1.394 \AA$) distances of the product amido fragment in the second case, indicative of completion of hydride transfer in ip-pro-R-H2.

Figure S14. Hydrogen activation by ip-pro-R.

Figure S15. Structure of ip-pro-R-H2.
On the other hand, hydrogen coordination and activation by a1R (Figure S16) shows a similar pathway to that described for a1R-R-6a in the main text. Thus, hydrogen interaction with $\mathbf{a} 1 \mathbf{R}$ starts with TS3d, with a $\Delta \mathrm{G}^{\neq}=9.8 \mathrm{kcal} \mathrm{mol}^{-1}$. The latter leads to a loose hydrogen complex H1R-I characterized by $\mathrm{d}(\mathrm{Ru}-\mathrm{H})$ distances of 2.131 and 2.206 \AA, which shows little interaction between the metal atom and dihydrogen $(\mathrm{d}(\mathrm{H}-\mathrm{H})=0.769$ \AA). Coordination pathway is followed by TS3e and then by a tight hydrogen complex, characterized H1R-t by d(Ru-H) distances of 1.777 and $1.814 \AA$, while $\mathrm{d}(\mathrm{H}-\mathrm{H})=0.824$ \AA. This complex has a $\Delta \mathrm{G}=12.1 \mathrm{kcal} \mathrm{mol}^{-1}$ with respect to a1R and H_{2}, in line with literature precedents. ${ }^{\text {S27 }}$

Figure S16. Hydrogen coordination/activation pathway by a1R.

References

S1. (a) M. Vaquero, A. Suárez, S. Vargas, G. Bottari, E. Álvarez and A. Pizzano, Chem. Eur. J., 2012, 18, 15586; (b) P. Kleman, M. Vaquero, I. Arribas, A. Suárez, E. Álvarez and A. Pizzano, Tetrahedron Asymmetry, 2014, 25, 744.

S2. In our original report of complex $\operatorname{Ru}(C l)_{2}(\mathbf{2 a})(\mathbf{3 a})^{\text {Slb }}$ data in solution corresponded to trans isomer ($\mathbf{1 a}$ in the present paper), while X-ray diffraction study corresponded to a cis isomer (cis-1a in the present paper). This uncorrect correlation was probably due to some isomerization in solution of $\mathbf{1 a}$, studied in the present contribution, along with a much better crystallinity of cis-1a.

S3. J. S. M. Samec and J.-E. Bäckvall, Chem. Eur. J., 2002, 8, 2955.
S4. E. de Julián, E. Menéndez-Pedregal, M. Claros, M. Vaquero, J. Díez, E. Lastra, P. Gamasa and A. Pizzano, Org. Chem. Front., 2018, 5, 841.

S5. W. Li, G. Hou, M. Chang and X. Zhang, Adv. Synth. Catal., 2009, 351, 3123.
S6. S. Zhou, S. Fleischer, K. Junge and M. Beller, Angew. Chem. Int. Ed., 2011, 50, 5120.
S7. (a) Bruker APEX2; Bruker AXS, Inc.; Madison, WI, 2007. (b) Bruker Advanced Xray solutions. SAINT and SADABS programs. Bruker AXS Inc. Madison, WI, 2004.

S8. M. C. Burla, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, G. Polidori, and R. Spagna, J. Appl. Crystallogr. 2003, 36, 1103.

S9. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
S10. P. v. d. Sluis and A. L. Spek, Acta Crystallogr., Sect. A. 1990, 46, 194.
S11. J. W. Faller and P. P. Fontaine, J. Organomet. Chem., 2007, 692, 1110.
S12. (a) H. D. Flack, G. Bernardinelli, Chirality 2008, 690, 681; (b) A. Linden, Tetrahedron: Asymmetry, 2017, 28, 1314.

S13. H. D. Flack, Physical and Spectrometric Analysis: Absolute Configuration Determination by X-Ray Crystallography; in Comprehensive Chirality, Volume 8, Chapter 8.33. Elsevier Ltd., 2012.

S14. Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.

S15. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
S16. (a) J. P. Perdew, K. Burke, Y. Wang, Phys. Rev. B., 1996, 54, 16533; (b) K. Burke, J. P. Perdew, Y. Wang, in Electronic Density Functional Theory: Recent Progress and New Directions, Ed. J. F. Dobson, G. Vignale, and M. P. Das (Plenum, 1998).

S17. S. Grimme, S. Ehrlich and L. Goerigk, J. Comp. Chem., 2011, 32, 1456.
S18. (a) W. J. Hehre, K. Ditchfield, and J. A. Pople, J. Chem. Phys. 1972, 56, 2257; (b) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213; (c) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654.

S19. H. T. Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, Theor. Chim. Acta, 1990, 77, 123.

S20. F. Weigend, F. Furche and R. Ahlrichs, J. Chem. Phys. 2003, 119, 12753.
S21. A. V Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B., 2009, 113, 6378.
S22. C. Gonzalez and B. Schlegel, J. Chem. Phys. 1989, 90, 2154.
S23. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580. http://sobereva.com/multiwfn/
S24. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng and T. E. Ferrin, J. Comput. Chem. 2004, 25, 1605. http://www.rbvi.ucsf.edu/chimera/

S25. W. Humphrey, A. Dalke and K. Schulten, J. Molec. Graphics, 1996, 14, 33. http://www.ks.uiuc.edu/Research/vmd/

S26. (a) S. Kozuch and S. Shaik, Acc. Chem. Res., 2011, 44, 101; (b) A. Uhe, S. Kozuch and S. Shaik, J. Comput. Chem., 2011, 32, 978.

S27. P. A. Dub, N. J. Henson, R. L. Martin and J. C. Gordon, J. Am. Chem. Soc., 2014, 136, 3505.
$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 a})(\mathbf{3 b})(\mathbf{1 b})$.


```
\ヘNヘNべべN
```


$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 b})(\mathbf{3 b})(\mathbf{1 c})$

175	170	165	160	155	150	145	140	135	130	125	120	115	110	105	100	95	90	85	80	75	70

¢ N	\% \%	
	นึ่冂ำ	¢¢ ¢ ¢ -
$\checkmark 1$	V	\/ \}

\qquad
$11 / 1$ $\begin{array}{lll}60 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30\end{array}$ f1 (ppm)

[^0]

$\operatorname{Ru}(\mathrm{Cl})_{2}(\mathbf{2 e})(\mathbf{3 a})(\mathbf{1 g})$.
 $\underbrace{\infty}$

$\begin{array}{ll}55 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20 & 15\end{array}$
$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 e})(\mathbf{3 b})(\mathbf{1 h})$.

$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 c})(\mathbf{3 c})(\mathbf{1 i})$

$\begin{array}{lllllllllllllllllllllllllllllllllll}60 & 155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25\end{array}$

$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 c})(\mathbf{3 d})(\mathbf{1} \mathbf{j})$

[^1]

$\mathrm{Ru}(\mathrm{Cl})_{2}(\mathbf{2 c})(\mathbf{4})(\mathbf{1 k})$

	170									1	70	6	5		1	10		
180	170	160	150	140	130	120	110	100	90 $p p m$	80	70	60	50	40	30	20	10	0

| 60 | 155 | 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 | 100 | 95 | 90 | 85 | 80 | 75 | 70 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 |
| :--- |

Isomerization of 1a

a) Mixture of diastereomers

Signals marked with an asterisk $\left({ }^{*}\right)$ correspond to remaining trans-1a.

b) Major isomer

Abstract

$f \%$ 0% 0. \vdots

$\mathrm{Ru}(\mathrm{H})\left(\mathrm{BH}_{4}\right)(\mathbf{2 c})(\mathbf{3 b})(7)$

$6 \mathbf{a}$

6b

$6 c$

6d

Toluene impurities marked with an asterisk (*)

$6 e$

$6 f$

6 g

6h

$6 i$

6j

$\stackrel{\text { す }}{v}$

6k

61

6m

6n

60

6p

N-phenyl-1-phenylethylamine (6a): Chiralcel OJ-H, $30^{\circ} \mathrm{C}$, n-hexane/2-propanol (97:3), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=20.7 \mathrm{~min}(R), t_{2}=26.6 \mathrm{~min}(S)$.

Peak Results

	RT	Area	$\%$ Area
1	21.901	6253450	50.00
2	24.997	6253704	50.00

Peak Results					
Name RT \% Area Area 1 20.844 2.63 812324 2 23.182 97.37 30065868 877311					

N-(4-methoxyphenyl)-1-(4-bromophenyl)ethylamine (6b): Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane $/ 2$-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=20.8 \mathrm{~min}(R), t_{2}=24.8 \mathrm{~min}(S)$.
Spectrum Index Plot

Peak Results

	Name	RT	\% Area	Area	Height
1		21.777	50.06	3737156	124652
2		26.692	49.94	3727525	97401

Peak Results

	Name	RT	\% Area	Area	Height
1		20.858	3.20	462981	15266
2		24.834	96.80	13988495	363599

N-(4-methoxyphenyl)-1-(4-trifluoromethylphenyl)ethylamine (6c): Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane/2-propanol (97:3), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=12.9 \mathrm{~min}(R), t_{2}=16.5 \mathrm{~min}$ (S).

Peak Results

	Name	RT	\% Area	Area	Height
1		12.929	3.04	632126	33083
2		16.484	96.96	20163593	767040

N -(4-methoxyphenyl)-1-(3,4-dimethoxyphenyl)ethylamine (6d): Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane $/ 2$-propanol (90:10), flow $0.5 \mathrm{~mL} / \mathrm{min}, t_{1}=27.7 \mathrm{~min}(R), t_{2}=31.9 \mathrm{~min}$ (S).

Peak Results					
Name RT \% Area Area 1 26.310 50.09 70941829 2 30.397 49.91 70682490	1245411				

Peak Results

	Name	RT	\% Area	Area	Height
1		27.722	6.32	1489898	36671
2		31.919	93.68	22081435	439010

N-(4-fluorophenyl)-1-phenylethylamine (6e): Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane/2propanol (98:2), flow $0.5 \mathrm{~mL} / \mathrm{min}, t_{1}=15.2 \mathrm{~min}(R), t_{2}=17.5 \mathrm{~min}(S)$.

Peak Results					
	Name	RT	\% Area	Area	Height
1		16.222	49.80	45220562	2187208
2		18.319	50.20	45589910	1915218

Peak Results

	Name	RT	\% Area	Area	Height
1		15.249	2.93	2004181	111136
2		17.506	97.07	66334247	2744249

N-(3,5-dimethoxyphenyl)-1-phenylethylamine (6f): Chiralcel OB-H, $30^{\circ} \mathrm{C}, n-$ hexane/2-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=37.2 \mathrm{~min}(S), t_{2}=54.8 \mathrm{~min}(R)$.

Peak Results

	Name	RT	\% Area	Area	Height
1		37.610	49.65	8679624	132270
2		55.829	50.35	8800560	94637

Peak Results

	Name	RT	\% Area	Area	Height
1		37.254	95.59	11924598	182725
2		54.835	4.41	550473	6809

N-(4-methoxyphenyl)-1-phenylethylamine (6g): Chiralcel AD-H, $30^{\circ} \mathrm{C}$, n-hexane/2propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=12.8 \mathrm{~min}(R), t_{2}=14.0 \mathrm{~min}(S)$.

Peak Results

	RT	Area	\% Area
1	12.963	4903461	50.09
2	14.168	4885891	49.91

Peak Results					
	Name	RT	\% Area	Area	Height
1		12.891	2.03	382592	24212
2		14.093	97.97	18444318	1041253

N-(4-methoxyphenyl)-1-(3-methoxyphenyl)ethylamine (6h): Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane $/ 2$-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=22.1 \mathrm{~min}(R), t_{2}=25.5 \mathrm{~min}(S)$.

Peak Results

	Name	RT	\% Area	Area	Height
1		22.750	50.18	8909573	270428
2		26.800	49.82	8845769	217628

Peak Results

	Name	RT	\% Area	Area	Height
1		22.142	2.34	483551	14103
2		25.518	97.66	20162183	446984

N-(4-methoxyphenyl)-1-(2-methylphenyl)ethylamine (6i): Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n -hexane/2-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=8.3 \mathrm{~min}(R), t_{2}=9.5 \mathrm{~min}(S)$.

Peak Results

	RT	Area	\% Area
1	7.726	2808424	50.06
2	9.915	2801894	49.94

Peak Results

	Name	RT	$\%$ Area	Area	Height
1		8.348	3.25	129598	8281
2		9.541	96.75	3852378	201008

N-(4-methoxyphenyl)-1-(2-fluorophenyl)ethylamine (6j): Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n -hexane/2-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=10.5 \mathrm{~min}(R), t_{2}=12.6 \mathrm{~min}(S)$.

Peak Results					
	Name	RT	\% Area	Area	Height
1		10.576	50.18	2375250	149863
2		12.775	49.82	2358551	128047

Peak Results					
Name RT \% Area Area Height 1 10.562 2.30 198298 13441 2 12.660 97.70 8412955 461189					

N-(4-methoxyphenyl)-1-(4-methylphenyl)ethylamine (6k): Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane $/ 2$-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=11.6 \mathrm{~min}(R), t_{2}=13.1 \mathrm{~min}(S)$.

Peak Results			
RT Area \% Area 1 11.315 19942722 49.98 2 12.768 19959419 50.02			

Peak Results					
Name RT \% Area Area Height 1 11.605 2.98 841618 50358 2 13.117 97.02 27435467 1325196					

N-phenyl-1-(4-chlorophenyl)ethylamine (61): Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n-hexane/2propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=16.5 \mathrm{~min}(S), t_{2}=20.6 \mathrm{~min}(R)$.
Spectrum Index Plot

Peak Results

	Name	RT	\% Area	Area	Height
1		17.213	50.03	7329124	327615
2		19.579	49.97	7321023	284960

Peak Results

	Name	RT	$\%$ Area	Area	Height
1		16.524	95.47	39466190	1491298
2		20.627	4.53	1871410	66200

N-(4-methoxyphenyl)-1-(2-thienyl)ethylamine (6m): Chiralcel OD-H, $30^{\circ} \mathrm{C}, n-$ hexane $/ 2$-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=17.2 \mathrm{~min}(R), t_{2}=19.1 \mathrm{~min}(S)$.

Peak Results

	Name	RT	\% Area	Area	Height
1		18.612	49.87	13517055	553562
2		20.557	50.13	13589952	505770

Peak Results

	Name	RT	\% Area	Area	Height
1		17.233	2.43	760978	33515
2		19.134	97.57	30600116	1102306

N-(4-methoxyphenyl)-1-(1-naphthyl)ethylamine (6n): Chiralcel OD-H, $30^{\circ} \mathrm{C}, n-$ hexane $/ 2-$ propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=22.9 \mathrm{~min}(R), t_{2}=31.7 \mathrm{~min}(S)$.

Peak Results

	RT	Area	\% Area
1	22.354	1796249	50.51
2	29.603	1760014	49.49

Peak Results					
Name RT \% Area Area Height					
1		22.939	8.14	4252422	108219
2		31.719	91.86	47983091	875500

N-(4-methoxyphenyl)-1-(2-naphthyl)ethylamine (60): Chiralcel OD-H, $30^{\circ} \mathrm{C}, n-$ hexane/2-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=23.6 \mathrm{~min}(R), t_{2}=28.7 \mathrm{~min}(S)$.

Peak Results			
	RT	Area	\% Area
1	23.241	56344071	50.15
2	28.303	56010524	49.85

Peak Results

	Name	RT	\% Area	Area	Height
1		23.615	4.20	1711960	45693
2		28.767	95.80	39010343	607798

N-(4-methoxyphenyl)-1-phenylpropylamine (6p): Chiralcel OD-H, $30^{\circ} \mathrm{C}$, n -hexane/2-propanol (99:1), flow $1.0 \mathrm{~mL} / \mathrm{min}, t_{1}=10.7 \mathrm{~min}(R), t_{2}=11.0 \mathrm{~min}(S)$.

Peak Results

	RT	Area	$\%$ Area
1	10.416	5452003	49.99
2	11.548	5455051	50.01

Peak Results					
	Name	RT	$\%$ Area	Area	Height
1		10.728	2.01	225462	14161
2		11.838	97.99	10968665	591768

[^0]:

[^1]: $\begin{array}{ll}155 & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 & 75 & 70 & 65 & 60 & 55 & 50 & 45 & 40 & 35 & 30 & 25 & 20\end{array}$

