Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Jiao Meng,^{1,2} Yue Zhao,^{1,2} Haining Li,³ Ruiping Chen,⁴ Xun Sun,^{*1,2} Xuan Sun^{*3}

 ¹State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China. Email:sunxun@sdu.edu.cn
 ²Key Laboratory of Functional Crystal Materials and Device, Shandong University, Ministry of Education, Jinan, 250100, P. R. China. Email:sunxun@sdu.edu.cn
 ³Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R.China. E-mail: sunxuan@sdu.edu.cn
 ⁴State Key Lab of Structural Chemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002 (P.R. China)

Contents

1. Figures

2. Tables

Figures

Scheme S1 The synthesis of cobalt 5, 10, 15, 20 - meso - tetra (4-carboxyphenyl) porphyrin.

Fig. S1 1H NMR spectra of CoTCPP monomer.

Fig. S2 HRMS spectrum of CoTCPP monomer dissolved in CH₃OH.

Fig. S3 Ultraviolet visible absorption spectrum of (a) CoTCPP monomer and (b) CoTCPP@CeO₂.

Fig. S4 Cyclic voltammetry curves of CoTCPP monomer at different sweep speeds, the samples were dissolved in DMF.

Fig. S5 TEM images of ceria hollow nanorobs (a), composite materials in different mass ratio (**CoTCPP@CeO**₂) (b) 1/10, (c) 1/20, (d) 1 /30, (e) 1/40, (f) 1/50, just synthesized.

Figure S6 XRD patterns of a series of CoTCPP@CeO2.

Fig. S7 Cyclic oxygen production of the (a) **CoTCPP@CeO₂ (1/10)**, (b) **CoTCPP@CeO₂ (1/20)**, (c) **CoTCPP@CeO₂ (1/40)**, (d) **CoTCPP@CeO₂ (1/50)**, (e) CoTCPP monomer and (f) TCPP@30%Co₃O₄@CeO₂ (1/30).

Fig. S8 Transient photocurrent response of the CoTCPP monomer.

Fig. S9 EPR signal of the (a) CoTCPP monomer, (b) CeO_2 , (c) $TCPP@30\%Co_3O_4@CeO_2$ (1/30) and (d) $30\%Co_3O_4@CeO_2$.

Fig. S10 Ce 3d XPS spectra (a, b, c, d), O 1s XPS spectra (e, f, g, h)and Co 2p XPS spectra (h, i, j, k)of **CoTCPP@CeO₂ (1/10)** (a, e, h), **CoTCPP@CeO₂ (1/20)** (b, f, i), **CoTCPP@CeO₂ (1/40)** (c, g, j) and **CoTCPP@CeO₂ (1/50)** (d, h, k), respectively.

Fig. S11 Absorption spectra of the CoTCPP@CeO₂ (1/30) after the OER.

Fig. S12 Fourier transform infrared spectroscopy (FTIR) of a series of CoTCPP@CeO2.

S13 XRD patterns of the Co_3O_4 @CeO₂ NTs and the pure Co_3O_4 . (The characteristic peaks of CeO₂ are marked by dash line and Co_3O_4 by dot line.) CeO₂ (1 1 1) (2 0 0) (2 2 0) (3 1 1); Co_3O_4 (2 2 0) (3 1 1) (5 1 1) (4 4 0)

Fig. S14 (a) (b) Transient photocurrent response of the $Co_3O_4@CeO_2$ in different cobalt oxide content and (c) the pure Co_3O_4 ; (d) overpotential test of a series of $Co_3O_4@CeO_2$.

Fig. S15 (a) Transient photocurrent response of the TCPP@30%Co₃O₄@CeO₂ in different TCPP content and (d) overpotential test of a series of TCPP@30%Co₃O₄@CeO₂.

Fig. S16 SEM images of the $Co_3O_4@CeO_2$, composite materials with different Co_3O_4 content (a) 0.5%, (b) 10%, (c) 20%, (d) 30%, (e) 40%, (f) 50%.

Fig. S17 TEM-EDX mapping images of the TCPP@30%Co₃O₄@CeO₂ (1/30).

Fig. S18 Melecular orbital (MO) of the H₂TCPP, HOMO (left) and LUMO (right).

Fig. S19 MO of the CoTCPP, α HOMO (left) and α LUMO (right).

Fig. S20 MO of the CoTCPP, β HOMO (left) and β LUMO (right).

Table

	Chemical	Peak (eV)	AC%
O 1	Ce (IV)-O	529.57	27.05
O ₂	Ce (III)-O	530.80	39.39
O ₃	C=0	532.54	26.73
O_4	С-ОН	534.14	6.83

 Table S1 Fine peaks of O1s XPS before oxygen production test of the CoTCPP@CeO2=1:30.

	Chemical	Peak (eV)	AC%
O 1	Ce (IV)-O	529.7	38.53
\mathbf{O}_2	Ce (III)-O	530.59	14.58
O ₃	C=0	532.1	37.24
O_4	С-ОН	533.33	9.65

 Table S2 Fine peaks of O1s XPS after oxygen production test of the CoTCPP@CeO2=1:30.

	1:10	1:20	1:30	1:40	1:50
Oxygen vacancies (%)	39.77	35.9	39.39	48.25	45.70
Ce ³⁺ (%)	20.79	24.37	25.35	31.58	14.59

Table S3 Oxygen vacancies percentage composition of the CoTCPP@CeO₂.

	НОМО	LUMO
ТСРР	-5.883938 eV	-3.198660 eV
CoTCPP (α)	-5.933958 eV	-3.029727 eV
CoTCPP (β)	-5.934171 eV	-3.021372 eV

Table S4 Specific HOMO and LUMO level positions of TCPP and CoTCPP relative to vacuum

 levels.