### SUPPORTING INFORMATION

# Efficient Synthesis of Tetrahydrofurans with Chiral Tertiary Allylic Alcohols Catalyzed by Ni/P-Chiral Ligand DI-BIDIME

Yu Mu,<sup>‡a</sup> Tao Zhang,<sup>‡a</sup> Yaping Cheng,<sup>a</sup> Wenzhen Fu,<sup>b</sup> Zuting Wei,<sup>a</sup> Wanjun Chen<sup>a</sup> and Guodu Liu\*<sup>ab</sup>

a. Key Laboratory of Fine Organic Synthesis of Inner Mongolia, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 Daxue West Rd, Hohhot 010021, China. Email: guoduliu@imu.edu.cn

b. State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Rd, Shanghai 200032, China.

## **Table of Contents**

| 1. General Information and Materials                                     | S3    |
|--------------------------------------------------------------------------|-------|
| 2. Substrates Synthesis                                                  | S4    |
| 3. General Procedure of Nickel-Catalyzed Intramolecular Reductive Cycliz | ation |
| of Alkynones                                                             | S15   |
| 4. Physical Data of Products                                             | S16   |
| 5. Discovered New Asymmetric Cyclization Reactions with (S,S)-DI-BIDIME  | E and |
| <i>O</i> -Alkynone                                                       |       |
| 6. References                                                            | S57   |
| 7. NMR Spectra                                                           | S58   |

#### 1. General Information and Materials

All reactions and manipulations were performed in a nitrogen-filled glove box or using standard Schlenk techniques, unless otherwise noted. All anhydrous solvents were purchased from J & K Chemicals or Alfa Chemicals Inc, or used after standard purification procedures.  $Ni(cod)_2$  was purchased from Strem chemicals. Commercialized reagents were used without further purifications. All air sensitive ligands were stored in a nitrogen-filled glove box before use. Chiral ligand intermediates were prepared according to our reported procedures. cod = 1,5-cyclooctadiene.

<sup>1</sup>H, and <sup>13</sup>C NMR data were recorded on a BrukerDRX500, DRX400, NMR Spectrometer with CDCl<sub>3</sub>, or CD<sub>3</sub>OD as the solvent. <sup>1</sup>H chemical shifts were referenced to CDCl<sub>3</sub> at 7.26 ppm. <sup>13</sup>C chemical shifts were referenced to CDCl<sub>3</sub> at 77.16 ppm and obtained with <sup>1</sup>H decoupling. <sup>31</sup>P shifts were referenced to 85% H<sub>3</sub>PO<sub>4</sub> in D<sub>2</sub>O at 0.0 ppm as external standard and obtained with <sup>1</sup>H decoupling. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (br). MS was measured on Agilent 5973N (EI), Agilent 1100 Series LC/MSD (ESI) mass spectrometers. Column chromatography was performed with silica gel (200-300 mesh). X-Ray crystallographic analysis data were collected using a Bruker Smart-APEX instrument (CCD detector) or a Bruker Kappa APEX-II instrument (CCD detector). HPLC analyses and purifications were performed on a Thermo Fisher LC system with UV/VIS detector using chiralcel columns.

#### 2. Substrates Synthesis

#### Scheme 1. General procedure for substrate 1a





**Phenylprop-2-yn-1-ol (S1).** To a solution of phenylacetylene (22.0 mL, 200 mmol, 1.00 equiv) in THF (150 mL) at -78  $^{\circ}$ C was added dropwise *n*BuLi (84.0 mL, 210 mmol, 1.05 equiv, 2.5 M) in hexanes over 1 h under nitrogen.

The resulting mixture was warmed to 0 °C and paraformaldehyde (7.87 g, 240 mmol, 1.20 equiv) was added. After stirred at rt for 1 h, the mixture was heated to 50 °C and stirred for 3 h, then cooled to rt, quenched with saturated NH<sub>4</sub>Cl solution (500 mL), extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by column chromatography (eluent: PE/EA 20/1) to provide compound **S1** as light yellow oil (**S1**, 20.6 g, 78% yield). **S1**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.47-7.40 (m, 2H), 7.34-7.27 (m, 3H), 4.50 (s, 2H). The <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>1,5</sup> **S1** was prepared according to literature procedure.<sup>5</sup>



Ethyl 2-((3-phenylprop-2-yn-1-yl)oxy)acetate (S2). To a solution of NaH (4.32 g, 108.2 mmol, 1.20 equiv, 60% content) in THF (150 mL) at 0 °C was added 3-phenylprop-2-yn-1-ol (S1, 12.5 g, 94.6 mmol, 1.05 equiv) under nitrogen. Until no gas was generated, the mixture was allowed to warm up to

rt and stirred for 1 h. Then ethyl 2-bromoacetate (10.0 mL, 90.2 mmol, 1.00 equiv) was added at rt under nitrogen. After stirred at rt for 3 h, the reaction was quenched with saturated NH<sub>4</sub>Cl solution, extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by column chromatography (eluent: PE/EA 15/1) to afford compound **S2** as light yellow oil (**S2**, 14.7 g, 75%). **S2**: <sup>1</sup>H NMR (500 MHz, CDCl3)  $\delta$  7.45 (dd, J = 7.5, 2.0 Hz, 2H), 7.33 (t, J = 5.9 Hz, 3H), 4.54 (s, 2H), 4.24 (dd, J = 13.3,

6.2 Hz, 4H), 1.30 (t, J = 7.2 Hz, 3H). The <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.  $^{2,5}$  S2 was prepared according to literature procedure.<sup>5</sup>



Methoxy-N-methyl-2-((3-phenylprop-2-yn-1-yl)oxy)acetamide (S3). To a solution of ethyl 2-((3-phenylprop-2-yn-1-yl)oxy)acetate (S2, 8.7 g, 40.0 mmol, 1.00 equiv) and N,O- dimethylhydroxylamine hydrochloride (6.5 g, 60.0 mmol, 1.50 equiv) in THF (150 mL) at -20 °C was added dropwise *i*PrMgCl (90.0 mL, 180 mmol, 3.00 equiv, 2.0 M) in THF over 30 min under

nitrogen. The mixture was stirred at -20 °C for 30 min, then quenched with saturated NH<sub>4</sub>Cl solution, extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by column chromatography (eluent: PE/EA 5/1 to 3/1) to afford **S3** as white solid (**S3**, 6.16 g, 66% yield). **S3**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (dd, J = 7.4, 2.3 Hz, 2H), 7.35 – 7.29 (m, 3H), 4.57 (s, 2H), 4.46 (s, 2H), 3.71 (s, 3H), 3.21 (s, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>2,5</sup> **S3** was prepared according to literature procedure.<sup>5</sup>



**Phenyl-2-((3-phenylprop-2-yn-1-yl)oxy)ethan-1-one (1a).** To a solution of N-methoxy-N-methyl-2-((3-phenylprop-2-yn-1-yl)oxy)acetamide (**S3**, 500 mg, 2.14 mmol, 1.00 equiv) in THF (10 mL) at 0 °C under nitrogen was added PhMgBr (3.2 mL, 3.21 mml, 1.5 equiv, 1.0 M) in THF. After stirred at 0 °C for 1 h, the reaction was quenched with 2 M HCl, extracted with EtOAc,

washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by column chromatography (eluent: PE/EA 20/1) to afford compound **1a** as white solid (498 mg, 93% yield). **1a**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.44 (dd, *J* = 7.5, 1.8 Hz, 2H), 7.35 – 7.27 (m, 3H), 4.94 (s, 2H), 4.60 (s, 2H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>3,5</sup> **1a** was prepared according to literature procedure.<sup>5</sup>

#### Scheme 2. Synthetic Procedures for Substrate 1b





**Ethyl 2-(prop-2-yn-1-yloxy)acetate (S4).** To a solution of NaH (693 mg, 17.4 mmol, 1.00 equiv, 60% content) in THF (60 mL) at 0 °C was added dropwise ethyl 2-hydroxyacetate (1.64 mL, 17.4 mmol, 1.00 equiv) under nitrogen. Until no gas was generated, the mixture was allowed to warm up to rt and stirred for 1 h. Then

3-bromoprop-1-yne (1.80 mL, 20.9 mmol, 1.20 equiv) was added. After stirred at rt for 3 h, the reaction was quenched with saturated NH<sub>4</sub>Cl solution, extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by column chromatography (eluent: PE/EA 50/1) to afford colorless oil (**S4**, 1.98 g, 80%). **S4**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (dd, J = 7.4, 2.3 Hz, 2H), 7.35 – 7.29 (m, 3H), 4.57 (s, 2H), 4.46 (s, 2H), 3.71 (s, 3H), 3.21 (s, 3H). The <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>4,5</sup> **S4**, **S5**, **S6** and **1b** was prepared according to literature procedure.<sup>5</sup>



phenyl-2-((3-(p-tolyl)prop-2-yn-1-yl)oxy)ethan-1-one (1b): white solid, 95% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, J = 7.4 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 4.94 (s, 2H), 4.59 (s, 2H), 2.35 (s, 3H). The <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>

Preparation of **1c-1s** were carried out according to a procedure similar to that for the synthesis of **1b** from corresponding aryl iodides.



**2-((3-(4-methoxyphenyl)prop-2-yn-1-yl)oxy)-1-phenylethan-1-one** (**1c**): white solid, 79% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.41 – 7.34 (m, 2H), 6.88 – 6.78 (m, 2H), 4.93 (s, 2H), 4.59 (s, 2H), 3.81 (s, 3H). The <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.5



**1-phenyl-2-((3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)oxy)ethan** -**1-one (1d)**:white solid, 74% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, *J* = 7.6 Hz, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.59 – 7.51 (m, 4H), 7.49 (t, *J* = 7.7 Hz, 2H), 4.94 (s, 2H), 4.62 (s, 2H). The <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



**2-((3-(4-fluorophenyl)prop-2-yn-1-yl)oxy)-1-phenylethan-1-one** (1e): white solid, 93% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 – 7.91 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.45 – 7.38 (m, 2H), 7.04 – 6.94 (m, 2H), 4.93 (s, 2H), 4.59 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl3)  $\delta$  195.7, 163.7, 161.7, 134.9, 133.8, 133.7, 133.7, 128.8, 127.9, 118.4, 115.7,

115.5, 86.3, 83.9, 71.8, 59.2. HRMS (ESI) calculated for [M+Na, C<sub>17</sub>H<sub>13</sub>NaFO<sub>2</sub>]<sup>+</sup>:291.0792; found: 291.0792.



**2-((3-(4-chlorophenyl)prop-2-yn-1-yl)oxy)-1-phenylethan-1-one** (1f): white solid, 76% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (dd, J = 8.3, 1.2 Hz, 2H), 7.64 – 7.56 (m, 1H), 7.48 (t, J = 7.8 Hz, 2H), 7.40 – 7.32 (m, 2H), 7.32 – 7.27 (m, 2H), 4.92 (s, 2H), 4.59 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  195.6, 134.8, 134.8, 133.7, 133.0, 128.8, 128.7, 127.9, 120.8,

86.2, 85.2, 71.9, 59.2. HRMS (ESI) calculated for [M+Na, C<sub>17</sub>H<sub>13</sub>NaClO<sub>2</sub>]<sup>+</sup>: 307.0496; found: 307.0499.



**1-phenyl-2-((3-(m-tolyl)prop-2-yn-1-yl)oxy)ethan-1-one** (**1g**): light yellow oil, 84% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 – 7.92 (m, 2H), 7.62 – 7.54 (m, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.24 (d, *J* = 9.6 Hz, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 7.13 (d, *J* = 7.5 Hz, 1H), 4.93 (s, 2H), 4.59 (s, 2H), 2.31 (s, 3H). The <sup>1</sup>H NMR spectra is in agreement with these reported in the

literature.5



**2-((3-(3-methoxyphenyl)prop-2-yn-1-yl)oxy)-1-phenylethan-1-one (1h)**: colorless oil, 76% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.01 – 7.88 (m, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 2.3 Hz, 1H), 6.88 (dd, *J* = 8.3, 2.5 Hz, 1H), 4.94 (s, 2H), 4.60 (s, 2H), 3.78 (s, 3H). <sup>13</sup>C NMR (126 MHz,

CDCl<sub>3</sub>)  $\delta$  195.7, 159.3, 134.9, 133.6, 129.4, 128.8, 127.9, 124.3, 123.3, 116.7, 115.2, 87.3, 84.0, 71.8, 59.2, 55.3; HRMS (ESI) calculated for [M+Na, C<sub>18</sub>H<sub>16</sub>NaO<sub>3</sub>]<sup>+</sup> : 303.0992; found: 303.1008.



**1-phenyl-2-((3-(3-(trifluoromethyl)phenyl)prop-2-yn-1-yl)oxy)ethan-1-o ne (1i)**: colorless oil, 86% yield; <sup>1</sup>H NMR (500 MHz, cdcl<sub>3</sub>)  $\delta$  7.99 – 7.93 (m, 2H), 7.68 (s, 1H), 7.63 – 7.56 (m, 3H), 7.51 – 7.46 (m, 2H), 7.44 (t, *J* = 7.8 Hz, 1H), 4.94 (s, 2H), 4.61 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  195.6, 134.9, 134.8, 133.7, 131.1, 130.8, 128.9, 128.8,

128.6 (q, J = 3.8 Hz), 127.9, 125.2 (q, J = 3.7 Hz), 123.3, 85.9, 85.8, 72.0, 59.1. HRMS (ESI) calculated for  $[M+Na, C_{18}H_{13}NaF_3O_2]^+$ : 341.0760; found: 341.0761.



**2-((3-(3-fluorophenyl)prop-2-yn-1-yl)oxy)-1-phenylethan-1-one** (**1j**):light yellow oil, 78% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (dd, J = 8.3, 1.1 Hz, 2H), 7.64 – 7.54 (m, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.27 (td, J = 7.8, 5.8 Hz, 1H), 7.21 (dt, J = 7.7, 1.1 Hz, 1H), 7.12 (ddd, J = 9.4, 2.4, 1.4 Hz, 1H), 7.03 (tdd, J = 8.5, 2.6, 1.0 Hz, 1H), 4.93 (s, 2H), 4.59 (s, 2H). <sup>13</sup>C NMR (126

MHz, CDCl<sub>3</sub>) δ 195.6, 163.3, 161.3, 134.8, 133.7, 129.9, 128.8, 127.9, 127.7, 124.2, 118.7, 118.5, 116.1, 115.9, 86.1, 85.2, 71.9, 59.1.; HRMS (ESI) calculated for [M+Na, C<sub>17</sub>H<sub>13</sub>NaFO<sub>2</sub>]<sup>+</sup>: 291.0792; found: 291.0796.



**1-phenyl-2-((3-(o-tolyl)prop-2-yn-1-yl)oxy)ethan-1-one (1k)**: light yellow oil, 83% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (m, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.40 (d, *J* = 7.7 Hz, 1H), 7.24 – 7.17 (m, 2H), 7.13 (t, *J* = 7.3 Hz, 1H), 4.96 (s, 2H), 4.65 (s, 2H), 2.42 (s, 3H). The <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



**1-phenyl-2-((3-(2-(trifluoromethyl)phenyl)prop-2-yn-1-yl)oxy)ethan-1-on e (11)**: colorless oil, 81% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 – 7.91 (m, 2H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.59 (t, *J* = 7.3 Hz, 2H), 7.52 – 7.45 (m, 3H), 7.42 (t, *J* = 7.7 Hz, 1H), 4.98 (s, 2H), 4.65 (s, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  195.6, 134.8, 134.1, 133.7, 131.8, 131.5, 129.6, 128.8, 128.4, 127.9,

125.85 (q, J = 5.1 Hz), 124.9, 122.2, 120.6, 90.0, 83.4, 71.6, 59.0.; HRMS (ESI) calculated for  $[M+Na, C_{18}H_{13}NaF_3O_2]^+$ : 341.0760; found: 341.0758.



**2-((3-(2-methoxyphenyl)prop-2-yn-1-yl)oxy)-1-phenylethan-1-one** (1m): white solid, 70% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (dd, J = 8.3, 1.2 Hz, 2H), 7.63 – 7.54 (m, 1H), 7.47 (t, J = 7.7 Hz, 2H), 7.40 (dd, J = 7.6, 1.7 Hz, 1H), 7.30 (td, J = 8.4, 1.7 Hz, 1H), 6.90 (td, J = 7.5, 0.8 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 4.98 (s, 2H), 4.66 (s, 2H), 3.84 (s, 3H). <sup>13</sup>C NMR (126 MHz,

 $CDCl_3$ )  $\delta$  195.9 , 160.2, 135.0, 133.7, 133.5, 130.1, 128.7, 128.0, 120.4, 111.5, 110.6, 88.2, 84.0, 71.6, 59.4, 55.7.; HRMS (ESI) calculated for  $[M+Na, C_{18}H_{16}NaO_3]^+$ : 303.0992; found: 303.1009.



**2-((3-(furan-2-yl)prop-2-yn-1-yl)oxy)-1-phenylethan-1-one (1n)**:light yellow oil, 82% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 – 7.88 (m, 2H), 7.59 (tt, 1H), 7.52 – 7.43 (m, 2H), 7.38 (dd, J = 1.8, 0.6 Hz, 1H), 6.61 (d, J = 3.4 Hz, 1H), 6.38 (dd, J = 3.4, 1.9 Hz, 1H), 4.92 (s, 2H), 4.62 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  195.5, 143.9, 136.2, 134.8, 133.7, 128.8, 127.9, 116.1, 110.9, 88.8,

77.7, 71.7, 59.1. HRMS (ESI) calculated for [M+Na, C<sub>15</sub>H<sub>12</sub>NaO<sub>3</sub>]<sup>+</sup>: 263.0679; found: 263.0685.



**1-phenyl-2-((3-(thiophen-2-yl)prop-2-yn-1-yl)oxy)ethan-1-one** (10):light yellow oil, 77% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 – 7.89 (m, 2H), 7.62 – 7.53 (m, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.24 (ddd, 2H), 6.97 (dd, *J* = 5.1, 3.7 Hz, 1H), 4.92 (s, 2H), 4.61 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  195.7, 134.8, 133.7, 132.7, 128.8, 127.9, 127.7, 127.0, 122.2, 88.2 , 80.7, 71.8, 59.3. HRMS

(ESI) calculated for [M+Na, C<sub>15</sub>H<sub>12</sub>NaSO<sub>2</sub>]<sup>+</sup>:279.0450; found: 279.0470.



**1-phenyl-2-((3-(thiophen-3-yl)prop-2-yn-1-yl)oxy)ethan-1-one** (**1p**):light yellow oil, 71% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (dd, J = 8.3, 1.2 Hz, 2H), 7.65 – 7.54 (m, 1H), 7.52 – 7.42 (m, 3H), 7.25 (dd, J = 5.0, 3.0 Hz, 1H), 7.10 (dd, J = 5.0, 1.1 Hz, 1H), 4.92 (s, 2H), 4.58 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  195.8, 134.8, 133.7, 129.9, 129.5, 128.8, 127.9, 125.4, 121.4, 83.9,

82.5, 71.8, 59.3. HRMS (ESI) calculated for [M+Na, C<sub>15</sub>H<sub>12</sub>NaSO<sub>2</sub>]<sup>+</sup>: 279.0450; found: 279.0449.



**2-((3-(naphthalen-2-yl)prop-2-yn-1-yl)oxy)-1-phenylethan-1-one** (1q): white solid, 95% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (dd, J = 7.4, 6.2 Hz, 3H), 7.79 (ddd, J = 13.1, 7.1, 3.6 Hz, 3H), 7.58 (t, J = 7.4 Hz, 1H), 7.53 – 7.41 (m, 5H), 4.97 (s, 2H), 4.65 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  195.8, 134.9, 133.6, 133.0, 133.9, 131.9, 128.8, 128.4, 128.0, 127.9, 127.8,

127.8, 126.9, 126.6, 119.6, 87.7, 84.5, 71.9, 59.4. HRMS (ESI) calculated for  $[M+Na, C_{21}H_{16}NaO_2]^+$ : 323.1043; found: 323.1053.



**2-((3-(benzo[b]thiophen-2-yl)prop-2-yn-1-yl)oxy)-1-phenylethan-1-one** (**1r**):white solid, 73% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.98 – 7.92 (m, 2H), 7.78 – 7.70 (m, 2H), 7.62 – 7.55 (m, 1H), 7.51 – 7.42 (m, 3H), 7.39 – 7.32 (m, 2H), 4.94 (s, 2H), 4.64 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 195.6, 140.3, 138.9, 134.8, 133.7, 129.6, 128.8, 128.0, 125.7, 124.8, 123.9,

122.1, 122.0, 90.1, 80.9, 71.9, 59.3. HRMS (ESI) calculated for  $[M+Na, C_{19}H_{14}NaSO_2]^+$ : 329.0607; found: 329.0608.



**1-phenyl-2-((3-(quinolin-6-yl)prop-2-yn-1-yl)oxy)ethan-1-one** (**1s**): white solid, 86% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 8.91 (dd, *J* = 4.2, 1.7 Hz, 1H), 8.10 (d, *J* = 8.3 Hz, 1H), 8.04 (d, *J* = 8.7 Hz, 1H), 7.98 (dd, *J* = 8.3, 1.1 Hz, 2H), 7.93 (d, *J* = 1.5 Hz, 1H), 7.71 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.63 – 7.56 (m, 1H), 7.48 (dd, *J* = 10.8, 4.7 Hz, 2H), 7.41 (q, *J* = 8.3, 4.2 Hz, 1H), 4.97 (s,

2H), 4.66 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 195.7, 151.2, 147.9, 135.8, 134.9, 133.7, 132.1, 131.6, 129.7, 128.8, 127.9, 121.8, 120.6, 86.9, 85.5, 71.9, 59.3. HRMS (ESI) calculated for [M+Na, C<sub>20</sub>H<sub>15</sub>NaNO<sub>2</sub>]<sup>+</sup>: 324.0995; found: 324.1047.

Preparation of **1t-1am** were carried out according to a procedure similar to that for the synthesis of **1a** from corresponding magnesium reagents.



<sup>2-</sup>((**3-phenylprop-2-yn-1-yl)oxy**)-**1-(p-tolyl)ethan-1-one** (**1t**): white solid, 95% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (dd, J = 6.9, 5.5 Hz, 2H), 7.48 – 7.41 (m, 2H), 7.37 (dd, J = 14.6, 7.5 Hz, 2H), 7.33 – 7.27 (m, 3H), 4.93 (s, 2H),

4.60 (s, 2H), 2.40 (s, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



**1-(4-methoxyphenyl)-2-((3-phenylprop-2-yn-1-yl)oxy)ethan-1-one** (1u): white solid, 85% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 – 7.91 (m, 2H), 7.44 (dd, J = 7.4, 2.0 Hz, 2H), 7.36 – 7.27 (m, 3H), 6.99 – 6.89 (m, 2H), 4.88 (s, 2H), 4.59 (s, 2H), 3.86 (s, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



**2-((3-phenylprop-2-yn-1-yl)oxy)-1-(4-(trifluoromethyl)phenyl)ethan-1-on e (1v)**: white solid, 64% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.23 (s, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 7.8 Hz, 1H), 7.62 (t, *J* = 7.8 Hz, 1H), 7.43 (dd, *J* = 7.6, 1.7 Hz, 2H), 7.38 – 7.28 (m, 3H), 4.92 (s, 2H), 4.60 (s, 2H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



**1-(4-fluorophenyl)-2-((3-phenylprop-2-yn-1-yl)oxy)ethan-1-one** (1x): white solid, 53% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 – 7.96 (m, 2H), 7.43 (dd, *J* = 7.6, 1.8 Hz, 2H), 7.38 – 7.27 (m, 3H), 7.18 – 7.11 (m, 2H), 4.88 (s, 2H), 4.59 (s, 2H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



**2-((3-phenylprop-2-yn-1-yl)oxy)-1-(m-tolyl)ethan-1-one (1y)**: colorless oil, 73% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 (d, J = 8.2 Hz, 2H), 7.51 – 7.38 (m, 2H), 7.37 – 7.28 (m, 3H), 7.26 (d, J = 8.0 Hz, 2H), 4.91 (s, 2H), 4.59 (s, 2H), 2.41 (s, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



**1-(3-methoxyphenyl)-2-((3-phenylprop-2-yn-1-yl)oxy)ethan-1-one** (1z): white solid, 77% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.52 (d, J = 7.7 Hz, 1H), 7.50 – 7.48 (m, 1H), 7.44 (dd, J = 7.5, 1.9 Hz, 2H), 7.38 (t, J = 7.9 Hz, 1H), 7.35 – 7.28 (m, 3H), 7.13 (dd, J = 8.2, 2.6 Hz, 1H), 4.92 (s, 2H), 4.60 (s, 2H), 3.85 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  195.6, 160.0, 136.2, 131.8, 129.8, 128.6, 128.3, 122.4, 120.4, 120.2, 112.2, 87.4, 84.1, 71.8, 59.3,

55.5.; HRMS (ESI) calculated for [M+Na, C<sub>18</sub>H<sub>16</sub>NaO<sub>3</sub>]<sup>+</sup>: 303.0992; found:303.1012.



**3-((3-phenylprop-2-yn-1-yl)oxy)-1-(o-tolyl)ethan-1-one (1aa)**: colorless oil, 94% yield; <sup>1</sup>H NMR (500 MHz, cdcl<sub>3</sub>)  $\delta$  7.61 (d, *J* = 7.7 Hz, 1H), 7.44 (dd, *J* = 7.5, 1.8 Hz, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.31 (t, *J* = 6.0 Hz, 3H), 7.26 (d, *J* = 8.1 Hz, 2H), 4.79 (s, 2H), 4.58 (s, 2H), 2.52 (s, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



(2-methoxyphenyl)-2-((3-phenylprop-2-yn-1-yl)oxy)ethan-1-one (1ab): white solid, 87% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (dd, J = 7.7, 0.8 Hz, 1H), 7.53 – 7.48 (m, 1H), 7.44 (dd, J = 6.9, 1.7 Hz, 2H), 7.38 – 7.27 (m, 3H), 7.04 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 8.4 Hz, 1H), 4.87 (d, J = 0.7 Hz, 2H), 4.59 (s, 2H), 3.92 (s, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  197.2, 159.2, 134.4, 131.8, 130.8, 128.5, 128.3, 125.3, 122.6, 121.0, 111.5, 86.8, 84.8, 75.6, 59.1,

55.6; HRMS (ESI) calculated for [M+Na, C<sub>18</sub>H<sub>16</sub>NaO<sub>3</sub>]<sup>+</sup>:303.0992; found:303.1035.



**1-(naphthalen-1-yl)-2-((3-phenylprop-2-yn-1-yl)oxy)ethan-1-one** (1ac): light yellow oil, 87% yield ;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.64 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.2 Hz, 1H), 7.92 – 7.81 (m, 2H), 7.61 – 7.51 (m, 2H), 7.49 (dd, J = 8.0, 7.4 Hz, 1H), 7.43 (dd, J = 7.6, 1.8 Hz, 2H), 7.34 – 7.26 (m, 3H),

 $\downarrow$  4.93 (s, 2H), 4.63 (s, 2H). <sup>1</sup>H NMR spectra is in agreement with these

reported in the literature.<sup>5</sup>



**1-(naphthalen-2-yl)-2-((3-phenylprop-2-yn-1-yl)oxy)ethan-1-one** (1ad): light yellow oil, 90% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.48 (s, 1H), 8.01 (dd, J = 8.6, 1.7 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.88 (dd, J = 15.2, 8.4 Hz, 2H), 7.57 (dddd, J = 28.0, 8.1, 6.9, 1.2 Hz, 2H), 7.46 – 7.42 (m, 2H), 7.34 – 7.26 (m, 3H), 5.06 (s, 2H), 4.64 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  195.9, 136.0, 132.6, 132.3, 131.9, 129.8, 128.8, 128.7, 128.5, 128.0, 127.9, 127.0,

125.9, 123.7, 122.5, 87.5, 84.3, 72.1, 59.5. HRMS (ESI) calculated for  $[M+Na, C_{21}H_{16}NaO_2]^+$ : 323.1045; found: 323.1065.



1-([1,1'-biphenyl]-4-yl)-2-((3-phenylprop-2-yn-1-yl)oxy)ethan-1-one (1ae): white solid, 86% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.62 (dd, J = 5.2, 3.4 Hz, 2H), 7.50 – 7.37 (m, 5H), 7.35 – 7.27 (m, 3H), 4.96 (s, 2H), 4.62 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  195.4, 146.3, 139.8, 133.6, 131.8, 129.0, 128.7, 128.4, 127.4, 127.3, 122.4, 87.4, 84.2, 71.9, 59.3. HRMS (ESI) calculated for [M+Na,

 $C_{23}H_{18}NaO_2$ <sup>+</sup>: 349.1199; found: 349.1197.



**1-phenyl-3-((3-phenylprop-2-yn-1-yl)oxy)propan-2-one (1af)**: white solid, 84% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 (dd, J = 7.6, 1.8 Hz, 2H), 7.32 (dt, J = 7.5, 5.3 Hz, 5H), 7.27 – 7.20 (m, 3H), 4.46 (s, 2H), 4.28 (s, 2H), 3.81 (s, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  205.6, 133.4, 131.8, 129.5, 128.8, 128.7, 128.4, 127.2, 122.2, 87.4, 83.9, 73.7, 59.3, 46.4. HRMS (ESI)

calculated for [M+Na, C<sub>18</sub>H<sub>16</sub>NaO<sub>2</sub>]<sup>+</sup>: 287.1043; found: 287.1057.



**1-((3-phenylprop-2-yn-1-yl)oxy)propan-2-one (1ag)**: colorless oil, 90% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47 – 7.40 (m, 2H), 7.36 – 7.28 (m, 3H), 4.49 (s, 2H), 4.23 (s, 2H), 2.20 (s, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



**1-((3-phenylprop-2-yn-1-yl)oxy)pentan-2-one (1ah)**: colorless oil, 78% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (dd, J = 7.5, 2.1 Hz, 2H), 7.37 – 7.28 (m, 3H), 4.49 (s, 2H), 4.22 (s, 2H), 2.47 (t, J = 7.3 Hz, 2H), 1.72 – 1.56 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  208.2, 131.8, 128.7, 128.3, 122.3, 87.3, 84.0, 74.3, 59.2, 41.0, 16.8, 13.7. HRMS (ESI)

calculated for  $[M+Na, C_{14}H_{16}NaO_2]^+$ : 239.1043; found: 239.1044.



**1-methyl-1-((3-phenylprop-2-yn-1-yl)oxy)butan-2-one (1ai)**: colorless oil, 95% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (dd, *J* = 7.5, 2.1 Hz, 2H), 7.38 – 7.28 (m, 3H), 4.49 (s, 2H), 4.32 (s, 2H), 2.81 (hept, *J* = 6.9 Hz, 1H), 1.13 (d, *J* = 7.0 Hz, 6H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



**1-((3-phenylprop-2-yn-1-yl)oxy)hexan-2-one (1aj)**: colorless oil, 68% yield; <sup>1</sup>H NMR (500 MHz, cdcl<sub>3</sub>)  $\delta$  7.47 – 7.40 (m, 2H), 7.35 – 7.28 (m, 3H), 4.49 (s, 2H), 4.23 (s, 2H), 2.48 (t, *J* = 7.5 Hz, 2H), 1.63 – 1.54 (m, 2H), 1.38 – 1.28 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



**1-cyclopropyl-2-((3-phenylprop-2-yn-1-yl)oxy)ethan-1-one (1ak)**: colorless oil, 79% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (dd, J = 7.5, 2.1 Hz, 2H), 7.36 – 7.27 (m, 3H), 4.51 (s, 2H), 4.38 (s, 2H), 2.20 – 2.10 (m, 1H), 1.15 – 1.08 (m, 2H), 0.95 (dq, J = 7.3, 3.6 Hz, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  208.0, 131.8, 128.7, 128.3, 122.3, 87.2, 84.1, 74.6, 59.2, 17.1, 11.5. HRMS

(ESI) calculated for  $[M+Na, C_{14}H_{14}NaO_2]^+$ : 237.0886; found: 237.0909.



**1-cyclopentyl-2-((3-phenylprop-2-yn-1-yl)oxy)ethan-1-one (1al)**: colorless oil, 84% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.47 – 7.40 (m, 2H), 7.38 – 7.28 (m, 3H), 4.50 (s, 2H), 4.32 (s, 2H), 3.07 – 2.95 (m, 1H), 1.88 – 1.73 (m, 4H), 1.73 – 1.63 (m, 2H), 1.63 – 1.54 (m, 2H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 210.1, 131.8, 128.6, 128.4, 122.4, 87.2, 84.1, 73.5, 59.1, 47.5, 28.9, 26.1.

HRMS (ESI) calculated for  $[M+Na, C_{16}H_{18}NaO_2]^+$ : 265.1199; found: 265.1214.



**1-cyclohexyl-2-((3-phenylprop-2-yn-1-yl)oxy)ethan-1-one (1am)**: colorless oil , 88% yield; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 – 7.40 (m, 2H), 7.38 – 7.28 (m, 3H), 4.49 (s, 2H), 4.31 (s, 2H), 2.53 (tt, *J* = 11.5, 3.4 Hz, 1H), 1.91 – 1.73 (m, 4H), 1.46 – 1.14 (m, 6H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  210.6, 131.8, 128.6, 128.3, 122.4, 87.2, 84.1, 72.8, 59.1, 47.1, 28.2, 25.8, 25.6.

HRMS (ESI) calculated for [M+Na, C<sub>17</sub>H<sub>20</sub>NaO<sub>2</sub>]<sup>+</sup>:279.1356; found: 279.1365.

# **3.** General Procedure of Nickel-Catalyzed Intramolecular Reductive Coupling of O-Alkynones



General procedure for asymmetric synthesis: Ni(cod)<sub>2</sub> (0.0075 mmol, 5 mol %), (*S*,*S*)-DI-BIDIME (L13, 0.00375 mmol, 2.5 mol %), and dioxane (0.4 mL) were added to a 4 mL screw-cap vial equipped with a magnetic stirring bar in the glove box. Substrate **1a** (0.15 mmol, 1.0 equiv.) was added to the solution in one portion, stirred for 5 mins, followed by the addition of triethylsilane (Et<sub>3</sub>SiH, 0.072 mL, 0.45 mmol, 3.0 equiv.). The vial was closed with a screw-cap, and the resulting mixture was stirred at 0 °C for 12 h. Quenched with saturated sodium bicarbonate (NaHCO<sub>3</sub>), extracted with ethyl acetate (EtOAc), washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by column chromatography (eluent: PE/EA 40/1) to afford **1a'**. After **1a'** was desilylated with TBAF in THF, the reaction was quenched with saturated NH<sub>4</sub>Cl solution, extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by column chromatography (eluent: PE/EA 40/1) to afford **1a'**. After **1a'** was desilylated with TBAF in THF, the reaction was quenched with saturated NH<sub>4</sub>Cl solution, extracted with EtOAc, washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by column chromatography (eluent: PE/EA 40/1) to afford **2a**.

General procedure for preparing racemic product: Ni(cod)<sub>2</sub> (0.0075 mmol, 5 mol %), PPh<sub>3</sub> (0.0075 mmol, 5 mol %), and dioxane (0.4 mL) were added to a 4 mL screw-cap vial equipped with a magnetic stirring bar in the glove box. Substrate **1a** (0.15 mmol, 1.0 equiv.) was added to the solution in one portion, stirred for 5 mins, followed by the addition of triethylsilane (Et<sub>3</sub>SiH, 0.072 mL, 0.45 mmol, 3.0 equiv.). The vial was closed with a screw-cap, and the resulting mixture was stirred at rt for 12 h. Quenched with saturated sodium bicarbonate (NaHCO<sub>3</sub>), extracted with ethyl acetate (EtOAc), washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under vacuum. The residue was purified by column chromatography (eluent: PE/EA 40/1) to afford racemic **1a'**. After racemic **1a'** was desilylated with TBAF in THF, the reaction was quenched with saturated NH<sub>4</sub>Cl solution, extracted under vacuum. The residue was purified by column chromatography (eluent: PE/EA 4/1) to afford racemic **2a**.

#### 4. Physical Data of Products



**2a**: white solid, 99% yield, > 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 10.42 min (*S*), 12.10 min (*R*).  $[\alpha]_D^{25} = +4.4$ 

**2a** <sup>PH</sup> (*c*=1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (d, *J* = 7.4 Hz, 2H), 7.40 – 7.31 (m, 5H), 7.27 – 7.24 (m, 1H), 7.13 (d, *J* = 7.5 Hz, 2H), 6.30 (t, *J* = 2.5 Hz, 1H), 4.97 (ddd, *J* = 113.1, 14.5, 2.5 Hz, 2H), 4.04 (dd, *J* = 58.6, 9.6 Hz, 2H), 2.41 (s, 1H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





**2b**: white solid, 93% yield, > 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 95/5, 254 nm, 16.80 min (*S*), 17.91 min (*R*).  $[\alpha]_D^{25} = +15.2$  (*c*=1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 – 7.51 (m, 2H), 7.38 (dd, *J* = 10.4, 4.7 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 1H), 7.08 (dd, *J* = 64.7, 8.0 Hz, 4H), 6.25 (t, *J* 

= 2.4 Hz, 1H), 4.94 (ddd, J = 114.7, 14.4, 2.4 Hz, 2H), 4.02 (dd, J = 61.4, 9.6 Hz, 2H), 2.46 (s,



1H), 2.34 (s, 3H).<sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>



**2c**: white solid, 90% yield, > 99:1 er with L13 (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 15/85, 254 nm, 7.48 min (*S*), 9.34 min (*R*).  $[\alpha]_D^{25} = +25.3$  (*c* = 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 – 7.52 (m, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 1H), 6.97 (dd, *J* = 75.4, 8.7 Hz, 4H), 6.23 (t, *J* = 2.5

Hz, 1H), 4.94 (ddd, J = 92.7, 14.3, 2.4 Hz, 2H), 4.03 (dd, J = 51.6, 9.5 Hz, 2H), 3.81 (s, 3H), 2.41 (s, 1H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>

Crystalization from n-Pentane/DCM (9:1) gave crystals suitable for X-ray crystallographic analysis, which revealed its absolute configuration for the chiral tertiary alcohol **2c** as shown in **Figure 1**.



**Figure 1**. X-ray derived ORTEP representation of **2c**. (CCDC Number: 2040946 contains the supplementary crystallographic data of **2c**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre)





2d: white solid, 70% yield, 99:1 er with L13 (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 11.16 min (S), 12.91 min (R).  $[\alpha]_D^{25} = +8.6$ 

 $(c = 1.0, \text{CH}_2\text{Cl}_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (ddd, J = 8.3, 7.1, 5.3 Hz, 4H), 7.43 – 7.37 (m, 2H), 7.36 – 7.30 (m, 1H), 7.22 (d, J = 8.2 Hz, 2H), 6.34 (t, J = 2.5

Hz, 1H), 4.95 (ddd, J = 105.5, 14.7, 2.5 Hz, 2H), 4.06 (dd, J = 40.7, 9.6 Hz, 2H), 2.52 (s, 1H).<sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





**2e**: colorless oil, 79% yield, 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 10.68 min (*S*), 13.02 min (*R*).  $[\alpha]_D^{25} = +4.3$  (*c*=1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (dt, *J* = 3.1, 1.8 Hz, 2H),

7.43 - 7.35 (m, 2H), 7.34 - 7.28 (m, 1H), 7.13 - 6.97 (m, 4H), 6.25 (t, J = 2.6 Hz, 1H), 4.91 (ddd, J = 108.9, 14.4, 2.5 Hz, 2H), 4.03 (dd, J = 52.3, 9.6 Hz, 2H), 2.57 (s, 1H).  $^{13}$ C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  163.0, 161.0, 147.0, 147.0, 141.5, 132.5, 130.0 (d, J = 8.1 Hz), 128.2, 127.6, 126.3, 123.7, 115.7, 115.6, 82.9, 81.2, 70.6. HRMS (ESI) calculated for [M+Na, C<sub>17</sub>H<sub>15</sub>NaFO<sub>2</sub>]<sup>+</sup>:239.0948; found: 239.0949.





**2f**: colorless oil, 83% yield, 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 12.27 min (*S*), 14.06 min (*R*).  $[\alpha]_D^{25} = +20$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 – 7.51 (m, 2H), 7.42 – 7.36 (m, 2H), 7.35 – 7.29 (m, 3H), 7.05 (t, J = 5.5 Hz, 2H), 6.25 (t, J = 2.6 Hz, 1H), 4.92

(ddd, J = 109.3, 14.5, 2.5 Hz, 2H), 4.04 (dd, J = 48.4, 9.6 Hz, 2H), 2.41 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  148.1, 141.3, 134.8, 133.4, 129.7, 128.8, 128.3, 127.6, 126.2, 123.7, 83.0, 81.1, 70.7. ;HRMS (ESI) calculated for [M+Na, C<sub>17</sub>H<sub>15</sub>NaClO<sub>2</sub>]<sup>+</sup>: 369.0653; found: 369.0659.





**2g**: white solid, 84% yield, > 99/1 er with **L2** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 8.40 min (*S*), 9.72 min (*R*).  $[\alpha]_D^{25} = +4.7$ 

 $(c=1.0, CH_2Cl_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (dt, J = 3.0, 1.8 Hz, 2H),

7.41 - 7.34 (m, 2H), 7.33 - 7.26 (m, 1H), 7.23 (dd, J = 10.8, 4.8 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 6.92 (d, J = 7.4 Hz, 2H), 6.25 (t, J = 2.6 Hz, 1H), 4.94 (ddd, J = 112.5, 14.5, 2.5 Hz, 2H), 4.02 (dd, J = 59.7, 9.6 Hz, 2H), 2.58 (s, 1H), 2.32 (s, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





**2h**: colorless oil, 71% yield, 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 12.74 min (*S*), 16.30 min (*R*).  $[\alpha]_D^{25} = +5.3$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 – 7.52 (m,

2H), 7.41 – 7.35 (m, 2H), 7.34 – 7.29 (m, 1H), 7.26 (d, J = 8.0 Hz, 1H), 6.81 (dd, J = 8.2, 2.3 Hz, 1H), 6.72 (d, J = 7.7 Hz, 1H), 6.66 – 6.62 (m, 1H), 6.26 (t, J = 2.6 Hz, 1H), 4.95 (ddd, J = 112.2, 14.5, 2.5 Hz, 2H), 4.03 (dd, J = 57.1, 9.6 Hz, 2H), 3.78 (s, 3H), 2.49 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 147.8, 141.6, 137.7, 129.6, 128.2, 127.5, 126.3, 124.8, 120.8, 114.0, 113.2, 83.0, 81.2, 70.8, 55.2. HRMS (ESI) calculated for [M+Na, C<sub>18</sub>H<sub>18</sub>NaO<sub>3</sub>]<sup>+</sup>: 305.1148; found: 305.1150.





**2i**: colorless oil, 58% yield, 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 6.39min (*S*), 7.63 min (*R*).  $[\alpha]_D^{25} = +12.0$ 

 $(c = 1.0, CH_2Cl_2); {}^{1}H NMR (500 MHz, CDCl_3) \delta 7.58 (dd, J = 5.3, 3.4 Hz, 2H), 7.49 (dt, J = 15.3, 7.7 Hz, 2H), 7.43 - 7.36 (m, 3H), 7.36 - 7.29 (m, 2H), 6.33 (t, J = 2.6 Hz, 1H), 4.96 (ddd, J = 104.8, 14.6, 2.6 Hz, 2H), 4.06 (dd, J = 40.8, 9.6 Hz, 2H), 2.38 (s, 1H). {}^{13}C NMR (126 MHz, CDCl_3) \delta 149.6, 141.2, 137.0, 131.2, 129.2, 128.4, 127.7, 126.2, 125.1, 124.1, 123.5, 82.9, 81.1, 70.5. HRMS (ESI) calculated for [M+Na, C_{18}H_{15}NaF_3O_2]^+: 343.0916; found: 343.0920$ 





**2j**: colorless oil, 83% yield, 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 8.48 min (*S*), 10.16 min (*R*).  $[\alpha]_D^{25} = +5.0$ 

**2j** <sup>Ph</sup> (*c*=1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 – 7.50 (m, 2H), 7.42 – 7.34 (m, 2H), 7.33 – 7.23 (m, 2H), 6.93 (td, *J* = 8.4, 2.4 Hz, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 6.82 – 6.75 (m, 1H), 6.25 (t, *J* = 2.6 Hz, 1H), 4.90 (ddd, *J* = 105.6, 14.6, 2.5 Hz, 2H), 4.02 (dd, *J* = 48.3, 9.6 Hz, 2H), 2.82 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  163.9, 161.9, 148.82, 141.4, 138.5, 138.5, 128.3, 127.6, 126.3, 124.1, 124.1, 123.8, 123.8, 114.7 (dd, J = 67.4, 21.6 Hz), 82.9, 81.0, 70.6. HRMS (ESI) calculated for [M+Na, C<sub>17</sub>H<sub>15</sub>NaFO<sub>2</sub>]<sup>+</sup>:239.0948; found: 239.0948.





**2k**: white solid, 97% yield, 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 15/85, 254 nm, 4.26 min (*S*), 4.76 min (*R*).  $[\alpha]_D^{25} = -28.7$ 

 $(c=1.0, CH_2Cl_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (dt, J = 3.0, 1.7 Hz, 2H), 7.43 – 7.34 (m, 2H), 7.34 – 7.27 (m, 1H), 7.21 – 7.10 (m, 3H), 7.08 – 7.01 (m, 1H), 6.45 (t, J = 2.5 Hz, 1H), 4.82 (ddd, J = 131.2, 14.3, 2.5 Hz, 2H), 4.04 (dd, J = 63.5, 9.6 Hz, 2H), 2.57 (s, 1H), 2.17 (s, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





**2l**: colorless oil, 56% yield, > 99/1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 7.72 min (*S*), 8.62 min (*R*).  $[\alpha]_D^{25} = -8.3$ 

 $(c = 1.0, CH_2Cl_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d, J = 7.8 Hz, 1H), 7.61 - 7.56 (m, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.45 - 7.31 (m, 4H), 7.25 (d, J = 8.1 Hz, 1H), 6.58 (dd, J = 4.6, 2.3 Hz, 1H), 4.75 (ddd, J = 138.7, 14.5, 2.5 Hz, 2H), 4.06 (dd, J = 55.5, 9.7 Hz, 2H), 2.39 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  150.6, 140.8, 135.1, 131.8, 129.3, 128.2, 127.7, 126.2, 126.1 (q, J = 5.7 Hz)., 121.2, 82.4, 81.3, 70.0. HRMS (ESI) calculated for [M+Na, C<sub>18</sub>H<sub>15</sub>NaF<sub>3</sub>O<sub>2</sub>]<sup>+</sup>: 343.0916; found: 343.0915.





**2m**: white solid, 17% yield, 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 13.24 min (*R*), 22.25 min (*S*).  $[\alpha]_D^{25} = -8.0$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 – 7.54

(m, 2H), 7.41 – 7.32 (m, 2H), 7.32 – 7.26 (m, 1H), 7.25 – 7.19 (m, 1H), 7.03 (dd, J = 7.6, 1.6 Hz, 1H), 6.93 (td, J = 7.5, 0.7 Hz, 1H), 6.83 (dd, J = 8.2, 0.7 Hz, 1H), 6.67 (t, J = 2.5 Hz, 1H), 4.86 (ddd, J = 84.2, 14.3, 2.6 Hz, 2H), 4.02 (dd, J = 62.3, 9.5 Hz, 2H), 3.73 (s, 3H), 2.66 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.9, 147.2, 142.2, 129.0, 128.4, 128.1, 127.4, 126.4, 125.4, 120.4, 119.5, 110.7, 82.8, 81.4, 70.9, 55.4. HRMS (ESI) calculated for [M+Na, C<sub>18</sub>H<sub>18</sub>NaO<sub>3</sub>]<sup>+</sup>: 305.1148; found: 305.1149.





2n: colorless oil, 47% yield, 96:4 er with L13 (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OJ-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 80/20, 254 nm, 14.53 min (R), 16.30 min (S).  $[\alpha]_D^{25} = +12.4$  $(c=1.0, CH_2Cl_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (dq, J = 2.6, 1.8 Hz, 2H), 7.43 (d, J = 1.6 Hz, 1H), 7.41 – 7.34 (m, 2H), 7.33 – 7.28 (m, 1H), 6.39 (dd, J = 3.3, 1.8 Hz, 1H), 6.18 (d, J = 3.3 Hz, 1H), 6.09 (t, J = 2.6 Hz, 1H), 5.00 (ddd, J = 141.1, 15.7, 2.5 Hz, 2H), 4.03 (dd, J = 61.8, 9.6 Hz, 2H), 2.44 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.2, 145.3, 143.0,

141.1, 128.2, 127.5, 126.3, 112.3, 111.6, 110.2, 82.6, 81.5, 71.5. HRMS (ESI) calculated for  $[M+Na, C_{15}H_{14}NaO_3]^+$ : 265.0835; found: 265.0836.





20: light yellow oil, 58% yield, 99:1 er with L13 (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 12.56 min (S), 16.46 min (R).  $[\alpha]_D^{25} = +6.0$  $(c=1.0, CH_2Cl_2)$ ;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (dt, J = 3.1, 1.8 Hz, 2H), 7.41 - 7.36 (m, 2H), 7.36 - 7.29 (m, 2H), 7.02 (dd, J = 5.1, 3.6 Hz, 1H), 6.88 (d, J = 3.5 Hz, 1H), 6.47 (t, J = 2.6 Hz, 1H), 4.91 (ddd, J = 126.2, 15.0, 2.5 Hz, 2H), 4.05 (dd, J = 58.3, 9.6

Hz, 2H), 2.44 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 145.3, 141.2, 140.2, 128.2, 127.6, 126.7, 126.4, 117.6, 82.9, 81.8, 71.1. HRMS (ESI) calculated for [M+Na, C<sub>15</sub>H<sub>14</sub>NaSO<sub>2</sub>]<sup>+</sup>: 281.0607; found: 281.0608.





**2p**: white solid, 60% yield, 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 15.71 min (*S*), 18.66 min (*R*).  $[\alpha]_D^{25} = +5.4$ 

**2p**  $(c=1.0, CH_2Cl_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (dt, J = 3.1, 1.9 Hz, 2H), 7.41 – 7.34 (m, 2H), 7.34 – 7.27 (m, 2H), 7.02 (d, J = 2.3 Hz, 1H), 6.95 (dd, J = 5.0, 1.2 Hz, 1H), 6.30 (t, J = 2.6 Hz, 1H), 4.91 (ddd, J = 115.3, 14.4, 2.6 Hz, 2H), 4.03 (dd, J = 60.3, 9.6 Hz, 2H), 2.51 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  146.1, 141.4, 138.0, 128.2, 127.6, 127.5, 126.4, 126.1, 123.8, 118.5, 82.8, 81.6, 71.1. HRMS (ESI) calculated for [M+Na, C<sub>15</sub>H<sub>14</sub>NaSO<sub>2</sub>]<sup>+</sup>: 281.0607; found: 281.0605.





**2q**: colorless oil, 95% yield, 98:2 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 16.99 min (*S*), 21.39 min (*R*).  $[\alpha]_D^{25} = +43.4$  (*c* = 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 – 7.70 (m, 3H), 7.65 – 7.56 (m, 2H), 7.53 (s, 1H), 7.48 – 7.42 (m, 2H), 7.42 – 7.36 (m, 2H), 7.35 – 7.29 (m,

1H), 7.23 (dd, J = 8.6, 1.7 Hz, 1H), 6.44 (t, J = 2.6 Hz, 1H), 5.05 (ddd, J = 111.5, 14.4, 2.5 Hz, 2H), 4.06 (dd, J = 53.8, 9.6 Hz, 2H), 2.66 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  147.8, 141.7, 133.9, 133.4, 132.5, 128.3, 128.1, 127.8, 127.6, 126.5, 126.4, 126.4, 126.0, 125.0, 83.1, 81.2, 70.9. HRMS (ESI) calculated for [M+Na, C<sub>21</sub>H<sub>18</sub>NaO<sub>2</sub>]<sup>+</sup>: 325.1199; found: 325.1212.





**2r**: white solid, 30% yield, 98:2 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 17.20 min (*S*), 21.20 min (*R*).  $[\alpha]_D^{25} = +3.0$ 

 $(c=1.0, \text{ CH}_2\text{Cl}_2); \ ^1\text{H NMR (500 MHz, CDCl}_3) \ \delta \ 7.76 \ (\text{dd}, \ J = 42.0, \ 7.3 \ \text{Hz}, \ 2\text{H}), \\ 7.64 - 7.52 \ (\text{m}, \ 2\text{H}), \ 7.40 \ (\text{t}, \ J = 7.6 \ \text{Hz}, \ 2\text{H}), \ 7.38 - 7.27 \ (\text{m}, \ 3\text{H}), \ 7.09 \ (\text{s}, \ 1\text{H}), \ 6.54$ 

(t, J = 2.5 Hz, 1H), 5.03 (ddd, J = 133.1, 15.1, 2.5 Hz, 2H), 4.08 (dd, J = 51.7, 9.6 Hz, 2H), 2.43 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  148.0, 141.0, 140.4, 140.0, 139.6, 128.3, 127.7, 126.3, 124.7, 124.4, 123.8, 122.7, 118.2, 82.9, 81.6, 70.8. HRMS (ESI) calculated for [M+Na, C<sub>19</sub>H<sub>16</sub>NaSO<sub>2</sub>]<sup>+</sup>: 331.0763; found: 331.0766.





**2s**: white solid, 31% yield, 95:5 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 70/30, 254 nm, 10.77 min (*S*), 15.10 min (*R*).  $[\alpha]_D^{25} = +10.2$  (c = 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.88 (dd, J = 4.2, 1.6 Hz, 1H), 8.10 (d, J = 7.5 Hz, 1H), 8.06 (d, J = 8.7 Hz, 1H), 7.68 – 7.58 (m, 2H), 7.51 (s, I = 8.8, 2.0 Hz, 1H), 7.45 – 7.27 (m, 2H), 7.24 (ddd, I = 7.2, 2.8, 1.2 Hz, 1H) 6.46

1H), 7.49 (dd, J = 8.8, 2.0 Hz, 1H), 7.45 – 7.37 (m, 3H), 7.34 (ddd, J = 7.3, 3.8, 1.2 Hz, 1H), 6.46 (t, J = 2.6 Hz, 1H), 5.06 (ddd, J = 101.5, 14.5, 2.5 Hz, 2H), 4.09 (dd, J = 45.7, 9.6 Hz, 2H), 2.75 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  150.7, 149.1, 147.4, 141.5, 136.1, 134.7, 129.8, 129.7, 128.3, 128.2, 127.6, 127.3, 126.3, 124.1, 121.6, 83.0, 81.2, 70.8. HRMS (ESI) calculated for [M+Na, C<sub>20</sub>H<sub>17</sub>NaNO<sub>2</sub>]<sup>+</sup>: 326.1151; found: 326.1153.





**2t**: light yellow oil, 98% yield, > 99/1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 10.54 min (*S*), 12.73 min (*R*).  $[\alpha]_D^{25} = +24.5$ 

**2t** Me  $(c=1.0, CH_2Cl_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 (d, J = 8.2 Hz, 2H), 7.33 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 7.15 (dd, J = 33.4, 7.7 Hz, 4H), 6.29 (t, J = 2.5 Hz, 1H), 4.94 (ddd, J = 113.1, 14.5, 2.5 Hz, 2H), 4.00 (dd, J = 60.3, 9.5 Hz, 2H), 2.52 (s, 1H), 2.36 (s, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





**2u**: white solid, 91% yield, > 99/1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 15.30 min (*S*), 18.88 min (*R*).  $[\alpha]_D^{25} = -2.6$ 

 $\begin{bmatrix} (c=1.0, CH_2Cl_2); ^{1}H NMR (400 MHz, CDCl_3) \delta 7.53 - 7.42 (m, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.24 (dd, J = 8.4, 6.3 Hz, 1H), 7.11 (d, J = 7.5 Hz, 2H), 6.96 - 6.84 \end{bmatrix}$ 

(m, 2H), 6.30 (t, J = 2.5 Hz, 1H), 4.92 (ddd, J = 89.4, 14.5, 2.4 Hz, 2H), 3.99 (dd, J = 50.1, 9.5 Hz, 2H), 3.81 (s, 3H), 2.59 (s, 1H).<sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>




**2v**: white solid, 99% yield, > 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 6.93 min (*S*), 8.78 min (*R*).  $[\alpha]_D^{25}$  = +5.3 (*c* = 1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (s, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.35 (t, *J* = 7.6 Hz, 2H),

7.30 – 7.22 (m, 1H), 7.12 (d, J = 7.4 Hz, 2H), 6.27 (t, J = 2.6 Hz, 1H), 4.97 (ddd, J = 105.3, 14.5, 2.5 Hz, 2H), 4.03 (dd, J = 70.1, 9.7 Hz, 2H), 2.65 (s, 1H).<sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





**2x**: white solid, 99% yield, > 99/1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 9.26 min (*S*), 11.27 min (*R*).  $[\alpha]_D^{25} = +4.6$ 

 $(c = 1.0, CH_2Cl_2); {}^{1}H NMR (500 MHz, CDCl_3) \delta 7.61 - 7.48 (m, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.25 (dd, J = 9.5, 5.1 Hz, 1H), 7.11 (d, J = 7.6 Hz, 2H), 7.08 - 7.00 (m, 2H),$ 

6.28 (t, J = 2.5 Hz, 1H), 4.93 (ddd, J = 111.0, 14.5, 2.4 Hz, 2H), 3.99 (dd, J = 68.2, 9.6 Hz, 2H), 2.61 (s, 1H).<sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





**2y**: light yellow oil, 96% yield, > 99/1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 8.91 min (*S*), 10.67 min (*R*).  $[\alpha]_D^{25} = +7.1$ 

 $(c = 1.0, CH_2Cl_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 (s, 1H), 7.34 (dd, J = 10.6, 4.5 Hz, 3H), 7.29 – 7.21 (m, 2H), 7.12 (d, J = 7.6 Hz, 3H), 6.30 (t, J = 2.5 Hz, 1H), 4.95 (ddd, J = 109.5, 14.5, 2.5 Hz, 2H), 4.02 (dd, J = 52.8, 9.5 Hz, 2H), 2.53 (s, 1H), 2.37 (s, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





2z: colorless oil, 93% yield, 99:1 er with L13 (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 16.17 min (*S*), 19.71 min (*R*).  $[\alpha]_D^{25} = +12.7$ 

 $\begin{bmatrix} \text{MeO} & 2z \\ 0 & (c = 1.0, \text{CH}_2\text{Cl}_2); ^1\text{H NMR (500 MHz, CDCl}_3) \delta 7.33 (t, J = 7.6 \text{ Hz}, 2\text{H}), 7.28 (t, J = 8.0 \text{ Hz}, 1\text{H}), 7.24 (dd, J = 8.0, 6.8 \text{ Hz}, 1\text{H}), 7.20 - 7.16 (m, 1\text{H}), 7.11 (t, J = 7.6 \text{ Hz}, 3\text{H}), 6.89 - 6.79 (m, 1\text{H}), 6.31 (t, J = 2.5 \text{ Hz}, 1\text{H}), 4.94 (ddd, J = 109.4, 14.5, 2.5 \text{ Hz}, 2\text{H}), 4.02 (dd, J = 54.4, 9.5 \text{ Hz}, 2\text{H}), 3.82 (s, 3\text{H}), 2.60 (s, 1\text{H}). ^{13}\text{C NMR (126 MHz, CDCl}_3) \delta 159.6, 147.2, 143.4, 136.3, 129.3, 128.7, 128.4, 127.6, 124.9, 118.8, 112.8, 112.4, 82.9, 81.2, 70.8, 55.3. \text{ HRMS (ESI) calculated for [M+Na, C_{18}H_{18}NaO_3]^+ : 305.1148; found: 305.1149.$ 





**2aa**: white solid, 98% yield, > 99/1 er with L13 (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 11.43 min (*S*), 13.75 min (*R*).  $[\alpha]_D^{25} = +29.3$ 

 $(c = 1.0, CH_2Cl_2);$  <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 – 7.80 (m, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.28 – 7.22 (m, 3H), 7.21 – 7.17 (m, 1H), 7.13 (d, J = 7.5 Hz, 2H), 6.31

 $(t, J = 2.4 \text{ Hz}, 1\text{H}), 4.98 \text{ (ddd, } J = 84.3, 14.4, 2.4 \text{ Hz}, 2\text{H}), 4.08 \text{ (dd, } J = 61.6, 9.7 \text{ Hz}, 2\text{H}), 2.39 \text{ (d,} J = 9.9 \text{ Hz}, 1\text{H}), 2.35 \text{ (s, 3H).}^{1}\text{H}$  NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





**2ab**: white solid, 99% yield, > 99/1 er with L13 (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 12.72 min (*R*), 15.34 min (*S*).  $[\alpha]_D^{25} = +30.2$  (*c*=1.0, CH<sub>2</sub>Cl<sub>2</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.54 (dd, *J* = 7.7, 1.6 Hz, 1H),

7.35 (t, J = 7.7 Hz, 2H), 7.30 (td, J = 8.0, 1.7 Hz, 1H), 7.24 (dd, J = 8.7, 6.1 Hz, 1H), 7.18 (d, J = 7.4 Hz, 2H), 6.98 (td, J = 7.6, 0.8 Hz, 1H), 6.93 (d, J = 8.2 Hz, 1H), 6.45 (t, J = 2.4 Hz, 1H), 4.90 (ddd, J = 48.4, 14.1, 2.4 Hz, 2H), 4.10 (dd, J = 159.6, 8.9 Hz, 2H), 3.85 (s, 3H), 3.77 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  156.4, 146.0, 136.9, 130.9, 129.1, 128.6, 128.4, 128.1, 127.2, 123.1, 120.9, 111.4, 81.9, 78.8, 70.6, 55.5. HRMS (ESI) calculated for [M+Na, C<sub>18</sub>H<sub>18</sub>NaO<sub>3</sub>]<sup>+</sup>: 305.1148; found: 305.1150.





**2ac**: yellow solid, 99% yield, > 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 85/15, 254 nm, 10.24 min (*S*), 12.21 min (*R*). $[\alpha]_D^{25} = -9.8$ 

 $(c=1.0, \text{CH}_2\text{Cl}_2);$  <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.09 (dd, J = 6.8, 2.7 Hz, 1H), 7.93 (dd, J = 7.3, 1.1 Hz, 1H), 7.90 – 7.86 (m, 1H), 7.84 (d, J = 8.2 Hz, 1H), 7.50 –

7.41 (m, 3H), 7.38 – 7.31 (m, 2H), 7.28 – 7.24 (m, 1H), 7.13 (d, J = 7.3 Hz, 2H), 6.35 (t, J = 2.5 Hz, 1H), 5.10 (ddd, J = 33.1, 14.5, 2.5 Hz, 2H), 4.32 (dd, J = 177.5, 9.5 Hz, 2H), 2.58 (s, 1H). HRMS (ESI) calculated for [M+Na,  $C_{21}H_{18}NaO_2$ ]<sup>+</sup>: 323.1043; found: 323.1072.<sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





2ad: white solid, 80% yield, 98:2 er with L13 (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 8.94 min (S), 15.72 min (R).  $[\alpha]_D^{25} = +85.9$  $(c=1.0, \text{ CH}_2\text{Cl}_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (d, J = 1.3 Hz, 1H), 7.92 – 7.78 (m, 3H), 7.55 – 7.45 (m, 3H), 7.33 (dd, J = 10.5, 4.7 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 7.10 (d, J = 7.3 Hz, 2H), 6.29 (t, J = 2.6 Hz, 1H), 5.01 (ddd, J = 107.9, 14.5, 2.5 Hz, 2H),

4.12 (dd, J = 32.2, 9.7 Hz, 2H), 2.67 (s, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  147.4, 138.9, 136.3, 133.0, 132.7, 128.7, 128.4, 128.0, 127.6, 127.6, 126.3, 126.2, 125.2, 124.5, 83.3, 81.0, 70.9. HRMS (ESI) calculated for  $[M+Na, C_{21}H_{18}NaO_2]^+$ : 325.1199; found: 325.1201.





**2ae**: white solid, 98% yield, 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 80/20, 254 nm, 9.29 min (*S*), 11.47 min (*R*). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 – 7.57 (m, 6H), 7.44 (t, *J* = 7.7 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 3H), 7.26 (t, *J* = 7.4 Hz, 1H), 7.15 (d, *J* = 7.4 Hz, 2H), 6.36 (t, *J* = 2.5 Hz, 1H), 4.99 (ddd, *J* = 108.2, 14.5, 2.5 Hz, 2H), 4.07 (dd, *J* = 51.0, 9.6 Hz, 2H), 2.47 (s,

1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  147.3, 140.7, 140.6, 140.4, 136.3, 128.8, 128.7, 128.4, 127.6, 127.4, 127.1, 127.0, 126.8, 124.9, 83.0, 81.2, 70.9. HRMS (ESI) calculated for [M+Na, C<sub>23</sub>H<sub>20</sub>NaO<sub>2</sub>]<sup>+</sup>: 351.1356; found: 351.1353.





**2af**: white solid, 68% yield, 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 16.47 min (*R*), 19.22 min (*S*). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (t, *J* = 7.6 Hz, 2H), 7.33 – 7.23 (m, 6H), 7.13 (d, *J* = 7.4 Hz, 2H), 6.37 (t, *J* = 2.5 Hz, 1H), 4.76 (ddd, *J* = 57.2, 14.4, 2.5 Hz, 2H), 3.73 (dd, *J* = 184.6, 9.1 Hz, 2H), 3.06 (q, *J* = 13.7 Hz, 2H), 2.04 (s, 1H). <sup>13</sup>C NMR (126 MHz,

CDCl<sub>3</sub>)  $\delta$  145.0, 136.5, 136.4, 130.5, 128.6, 128.3, 127.3, 126.9, 122.4, 80.2, 70.4, 44.4. HRMS (ESI) calculated for [M+Na, C<sub>18</sub>H<sub>18</sub>NaO<sub>2</sub>]<sup>+</sup>: 289.1199; found: 289.1199. Crystalization from n-Pentane/DCM (9:1) gave crystals suitable for X-ray crystallographic analysis, which revealed its absolute configuration for the chiral tertiary alcohol **2af** as shown in **Figure 2**.



**Figure 2**. X-ray derived ORTEP representation of **2af**. (CCDC Number: 2040947 contains the supplementary crystallographic data of **2af**. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre)





**2ag**: colorless oil, 60% yield, 92:8 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 95/5, 254 nm, 16.03 min (*S*), 18.50 min (*R*).  $[\alpha]_D^{25} = +49.0$ 

 $(c=1.0, CH_2Cl_2)$ ; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 6.1 Hz, 1H), 7.17 (d, J = 7.4 Hz, 2H), 6.56 (t, J = 2.5 Hz, 1H), 4.77 (ddd, J = 78.6, 14.5, 2.5 Hz, 2H), 3.76 (dd, J = 64.4, 9.2 Hz, 2H), 2.10 (s, 1H), 1.52 (s, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





**2ah**: colorless oil, 83% yield, 99:1 er with **L13** (2 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 9.91 min (*R*), 11.00 min (*S*).  $[\alpha]_D^{25} = +43.1$ 

 $(c = 1.0, CH_2Cl_2);$  <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (t, J = 7.7 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H), 7.16 (d, J = 7.4 Hz, 2H), 6.51 (t, J = 2.5 Hz, 1H), 4.74 (ddd, J = 87.1, 14.4, 2.5 Hz, 2H), 3.78 (dd, J = 21.7, 9.2 Hz, 2H), 1.97 (s, 1H), 1.86 (ddd, J = 13.6, 12.2, 4.5 Hz, 1H), 1.76 – 1.65 (m, 1H), 1.61 – 1.50 (m, 1H), 1.44 – 1.31 (m, 1H), 0.97 (t, J = 7.3 Hz, 3H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  145.9, 136.5, 128.6, 128.3, 127.3, 121.7, 80.5, 70.3, 40.3, 17.6, 14.6. HRMS (ESI) calculated for [M+Na, C<sub>14</sub>H<sub>18</sub>NaO<sub>2</sub>]<sup>+</sup>:241.1199; found: 241.1199.





**2ai**: light yellow oil, 40% yield, > 99/1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 17.00 min (*R*), 20.66 min (*S*).  $[\alpha]_D^{25} = +58.0$ 

 $(c=1.0, CH_2Cl_2)$ ;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.37 (dd, J = 10.6, 4.7 Hz, 2H), 7.27 (s, 1H), 7.17 (d, J = 7.3 Hz, 2H), 4.72 (ddd, J = 89.9, 14.4, 2.5 Hz, 2H), 3.84 (dd, J = 163.4, 9.4 Hz, 2H), 2.12 (hept, J = 6.9 Hz, 1H), 1.85 (s, 1H), 1.04 (dd, J = 48.0, 6.9 Hz, 6H).<sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





**2aj**: colorless oil, 98% yield, > 99:1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 9.04 min (*R*), 10.48 min (*S*).  $[\alpha]_D^{25} = +47.1$ 

 $(c = 1.0, CH_2Cl_2)$ ;<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (t, J = 7.7 Hz, 2H), 7.26 (d, J = 6.2 Hz, 1H), 7.17 (d, J = 7.4 Hz, 2H), 6.51 (t, J = 2.5 Hz, 1H), 4.75 (ddd, J = 87.4, 14.4, 2.5 Hz, 2H), 3.79 (dd, J = 21.7, 9.2 Hz, 2H), 1.90 (s, 1H), 1.89 – 1.84 (m, 1H), 1.78 – 1.68 (m, 1H), 1.57 – 1.48 (m, 1H), 1.35 (tt, J = 10.0, 6.2 Hz, 3H), 0.93 (t, J = 7.2 Hz, 3H). <sup>1</sup>H NMR spectra is in agreement with these reported in the literature.<sup>5</sup>





**2ak**: white solid, 44% yield, 98:2 er with L13 (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 10.21 min (*R*), 14.67 min (*S*).  $[\alpha]_D^{25} = +48.0$ 

 $(c=1.0, CH_2Cl_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (t, J = 7.7 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.17 (d, J = 7.3 Hz, 2H), 6.65 (t, J = 2.6 Hz, 1H), 4.78 (ddd, J = 82.3, 14.5, 2.6 Hz, 2H), 3.80 – 3.72 (m, 2H), 1.74 (s, 1H), 1.12 (tt, J = 8.3, 5.4 Hz, 1H), 0.64 – 0.41 (m, 4H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  145.4, 136.5, 128.6, 128.4, 127.3, 122.4, 78.9, 77.9, 70.6, 16.8, 0.6, 0.5. HRMS (ESI) calculated for [M+Na, C<sub>14</sub>H<sub>16</sub>NaO<sub>2</sub>]<sup>+</sup>: 239.1043; found: 239.1044.





**2al**: white solid, 75% yield, > 99/1 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 18.66 min (*R*), 21.25 min (*S*).  $[\alpha]_D^{25} = +54.4$ 

 $(c=1.0, \text{ CH}_2\text{Cl}_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (t, J = 7.7 Hz, 2H), 7.27 – 7.24 (m, 1H), 7.16 (d, J = 7.4 Hz, 2H), 6.54 (t, J = 2.5 Hz, 1H), 4.74 (ddd, J = 66.2, 14.4, 2.5 Hz, 2H), 3.82 (dd, J = 110.4, 9.2 Hz, 2H), 2.38 (p, J = 8.8 Hz, 1H), 1.92 (s, 1H), 1.91 – 1.82 (m, 1H), 1.72 – 1.41 (m, 7H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  145.9, 136.6, 128.6, 128.4, 127.2, 122.1, 82.2, 76.2, 70.6, 46.8, 27.6, 27.6, 26.0, 25.8. HRMS (ESI) calculated for [M+Na, C<sub>16</sub>H<sub>20</sub>NaO<sub>2</sub>]<sup>+</sup>:267.1356; found: 267.1356.





**2am**: white solid, 80% yield, > 99/1 er with L13 (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark OD-H, 25 °C, flow rate: 1 mL/min, hexanes/isopropanol: 90/10, 254 nm, 9.63 min (*R*), 10.70 min (*S*).  $[\alpha]_D^{25} = +70.8$ 

 $(c = 1.0, CH_2Cl_2)$ ; <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (t, J = 7.7 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H), 7.17 (d, J = 7.4 Hz, 2H), 6.49 (t, J = 2.5 Hz, 1H), 4.70 (ddd, J = 91.9, 14.3, 2.5 Hz, 2H), 3.83 (dd, J = 178.8, 9.4 Hz, 2H), 2.10 (d, J = 12.9 Hz, 1H), 1.88 (s, 1H), 1.82 (d, J = 13.4 Hz, 1H), 1.79 – 1.65 (m, 4H), 1.33 – 1.20 (m, 2H), 1.18 – 1.07 (m, 2H), 1.03 (ddd, J = 24.9, 12.6, 3.6 Hz, 1H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  145.7, 136.5, 128.6, 128.3, 127.3, 122.3, 82.9, 75.4, 70.8, 45.7, 27.8, 27.4, 26.6, 26.5, 26.4. HRMS (ESI) calculated for [M+Na, C<sub>17</sub>H<sub>22</sub>NaO<sub>2</sub>]<sup>+</sup>: 281.1512; found: 281.1526.



## **5.** Discovered New Asymmetric Cyclization Reactions with (*S*,*S*)-DI-BIDIME and *O*-Alkynone 1c



**General Procedure:** Ni(cod)<sub>2</sub> (0.0075 mmol, 10 mol %), (*S*,*S*)-**DI-BIDIME** (**L13**, 0.00375 mmol, 5 mol %), toluene (0.3 mL) were added to a 4 mL screw-cap vial equipped with a magnetic stirring bar in the glove box and stirrs for 10min. followed by the addition of B<sub>2</sub>Pin<sub>2</sub> (0.375 mmol, 2.5 equiv.) and the mixture was stirred for 30 min. Substrate **1c** (0.1 mmol, 1.0 equiv.) and methanol (0.1 mL) was added to the solution in one portion. The vial was closed with a screw-cap, and the resulting mixture was stirred at rt for 24 h. The mixture was filtered through a Celite pad and concentrated. The residue was purified by column chromatography (eluent: PE/EA 4/1) to afford **2c**. **2c**: white solid, 76% yield, 98:2 er with **L13** (2.5 mol %). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 0.5 mL/min, hexanes/isopropanol: 15/85, 254 nm, 14.74 min (*S*), 18.68 min (*R*). <sup>1</sup>H NMR spectra is in agreement with mentioned above.





**General Procedure:**  $[Rh(C_2H_4)_2Cl]_2$  (0.03 mmol, 3 mol%), phenylboric acid (0.2 mmol, 2 equiv), (*S*,*S*)-**DI-BIDIME** (**L13**, 0.015 mmol, 1.5 mol%), and degassed methanol (0.5 mL) were added to a 4 mL screw-cap vial equipped with a magnetic stirring bar in the glove box. Substrate **1c** (0.1 mmol, 1.0 equiv.) was added to the solution in one portion. The vial was closed with a screw-cap, and the resulting mixture was stirred at 60 °C until the raw materials are completely consumed. The solvent was removed in vacuo. The residue was purified by column chromatography (eluent: PE/EA 4/1) to afford **2c**. **2c**: white solid, 64% yield, 92:8 er with **L13** (2.5 mol%). Enantiomeric ratio was determined by chiral HPLC. Chiralpark AD-H, 25 °C, flow rate: 0.5 mL/min, hexanes/isopropanol: 15/85, 254 nm, 14.71 min (*S*), 18.57 min (*R*). <sup>1</sup>H NMR spectra is in agreement with mentioned above.



## 6. References

- [1] A. D. Worthy, C. L. Joe, T. E. Lightburn, K. L. Tan, J. Am. Chem. Soc. 2010, 132, 14757-14759.
- [2] P. Wessig, G. Müller, R. Herre, A. Kühn, Helv. Chim. Acta. 2006, 89, 2694-2719.
- [3] L. Zhao, X. Lu, Angew. Chem. Int. Ed. 2002, 41, 4343-4345.
- [4] M. Starck, P. Kadjane, E. Bois, B. Darbouret, A. Incamps, R. Ziessel, L. J. Charbonnière, *Chem. Eur. J.* 2011, *17*, 9164-9179.
- [5] W. Fu, M. Nie, A. Wang, Z. Cao, W. Tang, Angew. Chem. Int. Ed. 2015, 54, 2520-2524.

## 7. NMR Spectra





















































































































































































































































