Supporting Information for

A Reagent for Heteroatom Borylation, Including Iron Mediated Reductive Deoxygenation of Nitrate to a Di-Nitrosyl Iron Complex

Daniel M. Beagan, Veronica Carta and Kenneth G. Caulton*

Table of Contents

Experimental S2-S4
General S2
Borylation of azobenzene- S2
Borylation of bcc S2
Borylation competition between azobenzene and bcc S3
Borylation of TMSN_{3} S3
Borylation of $\mathrm{Ph}_{2} \mathrm{Tz}$ S3
Deoxygenation of nitrobenzene S3
Synthesis of $\mathrm{DIMFeCl}_{2}$ S3
Synthesis of DIMFe $\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{MeCN}) 4$ S4
Synthesis of DIMFe(NO) 25 S4
Oxidation of 5 S4
Spectral Data S5-S11
Figure S1: ${ }^{1} \mathrm{H}$ NMR of borylated azobenzene using 1 S5
Figure S2: ${ }^{1} \mathrm{H}$ NMR of borylated azobenzene using (Bpin) ${ }_{2}$ and $4,4^{\prime}$-bpy -S5
Figure S3: ${ }^{13} \mathrm{C}$ NMR of borylated azobenzene- S6
Figure S4: ${ }^{1} \mathrm{H}$ NMR of borylated bcc- S6
Figure S5: ${ }^{1} \mathrm{H}$ NMR of competition between azobenzene and bcc S7
Figure S6: ${ }^{1} \mathrm{H}$ NMR of borylated TMSN_{3} -58
Figure S7: ${ }^{1} \mathrm{H}$ NMR of borylated $\mathrm{Ph}_{2} \mathrm{Tz}$ S8
Figure S8: ${ }^{13} \mathrm{C}$ NMR of borylated $\mathrm{Ph}_{2} \mathrm{Tz}$ S9
Figure S9: ${ }^{1} \mathrm{H}$ NMR of deoxygenated/borylated nitrobenzene- S10
Figure S10: ${ }^{1} \mathrm{H}$ NMR of DIMFeCl ${ }_{2}$ -S10
Figure S11: ${ }^{1} \mathrm{H}$ NMR of 4 S11
Figure S12: ${ }^{1} \mathrm{H}$ NMR of 5 S11
Figure S13: FT-IR spectrum of DIMFeCl ${ }_{2}$ S12
Figure S14: FT-IR spectrum of 4 S12
Figure S15: FT-IR spectrum of 5 S13
Figure S16: FT-IR spectrum of $\left[\mathrm{DIMFe}(\mathrm{NO})_{2}\right]^{+}$ S13
EPR Simulation S14
General details S14
Figure S17: Overlaid experimental and simulated spectra S14
Crystallographic Data S14-S20
Data collection and refinement of (Bpin) $)_{2}$ Bpy 3 S14-S15
Data collection and refinement of 4 S15-S16
Data collection and refinement of 5 S16-S17
Crystallographic Tables S17-S20
Computational Details S20-S30
General details -S20
Corresponding orbital analysis S21
Figure S18: Corresponding orbital diagram of $\left[\mathrm{DIMFe}(\mathrm{NO})_{2}\right]^{+}$ -S21
Figure S19: Unpaired alpha electron in [DIMFe(NO) $\left.)_{2}\right]^{+}$with decreased isovalue -S21

Figure S20: Optimized structure for (DIM)Fe(ONNO)__S22
Scheme S1: Calculated thermodynamics for silylation of (TMS) $\mathrm{N}_{3} \quad$ S22
Table S4: Relative thermodynamics for (Bpin) ${ }_{2} \mathrm{Pz}$, (Bpin) ${ }_{2} \mathrm{Bpy}$, and (TMS) ${ }_{2} \mathrm{Pz} —$ S23-24
Table S5: Cartesian coordinates for optimized species_S25-30

Experimental

General. All reactions were carried out under an atmosphere of ultra-high purity gas using standard Schlenk techniques under Ar or in a glovebox under N_{2}. Solvents were purchased from commercial sources, purified using Innovative Technology SPS-400 PureSolv solvent system or by distilling from conventional drying agents and stored over activated $4 \AA$ molecular sieves. Glassware was oven-dried at $170^{\circ} \mathrm{C}$ overnight or flame dried prior to use. NMR spectra were recorded in various deuterated solvents at $25^{\circ} \mathrm{C}$ on a Varian Inova - 400 or 500 spectrometer (${ }^{1} \mathrm{H}: 400.11 \mathrm{MHz}, 500.11 \mathrm{MHz}$, respectively). Chemical shifts are reported in ppm from tetramethylsilane or the residual solvent as an internal standard: integration multiplicity ($s=$ singlet, $d=$ doublet, $t=$ triplet, $m=$ multiplet, $b r=b r o a d$). All starting materials have been obtained from commercial sources and used as received without further purification. (Bpin) ${ }_{2} \mathrm{Pz}$ was synthesized via the established procedure using THF as the solvent. ${ }^{1}$

General procedure for the stoichiometric borylation of azobenzene

To a J-Young tube containing azobenzene ($16 \mathrm{mg}, 0.0875 \mathrm{mmol}, 1$ equiv.) in d_{8}-toluene was added 1 (29 $\mathrm{mg}, 0.0875 \mathrm{mmol}, 1$ equiv.) also dissolved in d_{8}-toluene. The resulting solution was allowed to heat in an oil bath at $110^{\circ} \mathrm{C}$ for 36 hours, during which there was a color change from deep orange to yellow. ${ }^{1} \mathrm{H}$ NMR showed complete consumption of both starting materials after 36 hours of heating. The reported spectrum for borylated azobenzene ${ }^{2}$ was done in $\mathrm{C}_{6} \mathrm{D}_{6}$; therefore, the completed reaction was brought into the glovebox, dried in vacuo, and redissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ for spectroscopic assay.

1,2-diphenyl-1,2-bis(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hydrazine: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$, $298 \mathrm{~K}) \delta(\mathrm{ppm}) 7.68\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.0 \mathrm{~Hz}, 4 \mathrm{H}\right) 7.09\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}, 4 \mathrm{H}\right) 6.75\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right) 1.06(\mathrm{~s}, 12 \mathrm{H})$ $1.02(\mathrm{~s}, 12 \mathrm{H})$.

Catalytic borylation of azobenzene

To a J-Young tube containing azobenzene ($16 \mathrm{mg}, 0.0875 \mathrm{mmol}, 1$ equiv.) in d_{8}-toluene was added (Bpin) $)_{2}\left(22 \mathrm{mg}, 0.0875 \mathrm{mmol}, 1\right.$ equiv.) in d_{8}-toluene and $4,4^{\prime}$-bipyridine ($4.1 \mathrm{mg}, 0.026 \mathrm{mmol}, 0.3$ equiv.) also dissolved in d_{8}-toluene. The resulting solution was allowed to heat in an oil bath at $110{ }^{\circ} \mathrm{C}$ for 12 hours, during which the color changed from orange to yellow and ${ }^{1} \mathrm{H}$ NMR showed complete consumption of (Bpin) $)_{2}$ and azobenzene.

1,2-diphenyl-1,2-bis(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hydrazine: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{8}{ }^{-}$ toluene, 298 K) $\delta(\mathrm{ppm}) 7.68\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=8.2 \mathrm{~Hz}, 4 \mathrm{H}\right) 7.17\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}, 4 \mathrm{H}\right) 6.83\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right) 1.18(\mathrm{~s}$, $12 \mathrm{H}) 1.13$ ($\mathrm{s}, 12 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{8}$-toluene, 298K) $\delta(\mathrm{ppm}) 146.15,121.12,120.79,116.62,83.11$, 24.43, 24.03.

Catalytic borylation of Benzo(c)cinnoline, bcc

To a J-Young tube containing bcc ($18 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.) dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ was added (Bpin) $)_{2}(25.4$ $\mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.) in $\mathrm{C}_{6} \mathrm{D}_{6}$ and $4,4^{\prime}$-bipyridine ($4.7 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.3$ equiv.) also dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$. The resulting yellow solution was allowed to heat in an oil bath at $100{ }^{\circ} \mathrm{C}$ and the reaction was
monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The bcc was completely consumed after 40 hours of heating, to afford a deep yellow solution.

2,2'-biphenyl-1,1'-bis(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)hydrazine: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, $298 \mathrm{~K}) \delta(\mathrm{ppm}) 7.67\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.38\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.99\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.81\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=\right.$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.03 (s, br, 24 H).

Borylation competition between azobenzene and Benzo(c)cinnoline

To a J-Young tube containing azobenzene ($20 \mathrm{mg}, 0.110 \mathrm{mmol}, 1$ equiv.) and bcc ($19.8 \mathrm{mg}, 0.110 \mathrm{mmol}$, 1 equiv.) dissolved in d_{8}-toluene was added (Bpin) $2_{2}(27.9 \mathrm{mg}, 0.110 \mathrm{mmol}, 1$ equiv.) and 4,4'-bipyridine ($5.1 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.3$ equiv.) also dissolved in d_{8}-toluene and the solution was heated in an oil bath at $110^{\circ} \mathrm{C}$. The orange solution was monitored periodically by ${ }^{1} \mathrm{H} N \mathrm{NR}$, and after 40 hours of heating there was consumption of all (Bpin) 2_{2}. The ${ }^{1} \mathrm{H}$ NMR shows that the main product formed is borylated bcc, with small amounts of borylated azobenzene seen in the methyl region but almost undetectable amounts in the aromatic region.

Borylation of TMSN $\mathbf{3}^{\mathbf{~}}$

To a J-Young tube containing $\mathrm{TMSN}_{3}\left(12 \mathrm{mg}, 0.104 \mathrm{mmol}, 1\right.$ equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}$ was added (Bpin) ${ }_{2}$ (26.4 mg , 0.104 mmol, 1 equiv) and 4, 4^{\prime}-bipyridine ($4.9 \mathrm{mg}, 0.104 \mathrm{mmol}, 0.3$ equiv.). The resulting solution was heated in an oil bath at $100^{\circ} \mathrm{C}$ for 12 hours, after which ${ }^{1} \mathrm{H}$ NMR shows complete consumption of TMSN 3 .

Trimethylsilyl-bis(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl) amine: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 298 \mathrm{~K}\right)$ $\delta(\mathrm{ppm}): 1.02$ and $0.99(2 \mathrm{~s}, 24 \mathrm{H}) 0.15(\mathrm{~s}, 9 \mathrm{H})$

Borylation of $\mathrm{Ph}_{2} \mathbf{T z}$

To a J-young tube containing $\mathrm{Ph}_{2} \mathrm{Tz}\left(20 \mathrm{mg}, 0.064 \mathrm{mmol}, 1 \text { equiv.) in } \mathrm{d}_{8} \text {-THF was added (Bpin) }\right)_{2}(16.3 \mathrm{mg}$, $0.064 \mathrm{mmol}, 1$ equiv.) and 4, 4^{\prime}-bipyridine ($3.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.3$ equiv.) and the solution was heated to $80^{\circ} \mathrm{C}$. The pink solution slowly changed to a red, then a yellow solution, and after 12 hours of heating all (Bpin) ${ }_{2}$ was consumed.

3,6-diphenyl-1,4-bis(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl) tetrazine: ${ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}\right.$, $298 \mathrm{~K}) \delta(\mathrm{ppm}): 7.57\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 4 \mathrm{H}\right) 7.36\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right) 7.29\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=7.5 \mathrm{~Hz}, 4 \mathrm{H}\right) 1.15(\mathrm{~s}, 24 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, d ${ }_{8}$-toluene, 298K) $\delta(\mathrm{ppm}) 155.14,132.80,129.71,129.12,83.22,24.12$.

General procedure for the deoxygenation of nitrobenzene

To a J-young tube containing nitrobenzene ($10 \mathrm{mg}, 0.08 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{D}_{6}$ was added (Bpin) ${ }_{2}$ bpy (81.8 mg , 0.2 mmol) as a slurry in $\mathrm{C}_{6} \mathrm{D}_{6}$. The heterogeneous solution was allowed to mix on an NMR spinner for 30 minutes, and as the (Bpin) ${ }_{2}$ bpy reacted, the yellow solution became homogeneous. ${ }^{1} \mathrm{H}$ NMR assay after 30 minutes showed complete consumption of (Bpin) ${ }_{2}$ bpy as well as PhNO_{2}. When this reaction is done instead with (Bpin$)_{2} \mathrm{Pz}$, there is less than 50% conversion to the desired product, with a variety of other unidentified products being formed.

N,O-bis(4,4,5,5-tetramethyl-1,3,2dioxaborolan-2-yl)phenylhydroxylamine: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$, $298 \mathrm{~K}) \delta(\mathrm{ppm}): 7.56\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right) 7.10\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right) 6.71\left(\mathrm{t}, \mathrm{J}_{\mathrm{H}, \mathrm{H}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right) 1.04(\mathrm{~s}, 12 \mathrm{H})$ $1.00(\mathrm{~s}, 12 \mathrm{H})$.

Synthesis of (DIM) FeCl_{2}. The established procedure for the synthesis of other (α-diimine) FeCl_{2} complexes was followed. To a stirring solution of FeCl_{2} as a slurry in THF was added dropwise DIM also dissolved in THF. There was a color change to dark blue upon the addition of DIM, and the resulting solution was allowed to stir for 12 hours, upon which there was a dark maroon precipitate. The blue solution was filtered through celite, and the solid washed with excess THF until the THF was colorless. Removal of the THF in vacuo gave a purple solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}) 113.0$ (br s, 4H) 15.1 (br s, 6H) 11.32 (br s, 12H) 3.7 (br s, 6H).

Synthesis of (DIM)Fe($\left.\mathrm{NO}_{3}\right)_{2}(\mathbf{M e C N})$ 4. To a stirring solution of $\mathrm{DIMFeCl}_{2}$ ($200 \mathrm{mg}, 0.447 \mathrm{mmol}$) in MeCN was added $\mathrm{AgNO}_{3}(152 \mathrm{mg}, 0.895 \mathrm{mmol})$ also dissolved in MeCN dropwise, resulting in a slight color change to dark purple and the formation of a white precipitate. After filtration through celite to remove AgCl and removal of the solvent in vacuo, the purple solid was redissolved in a minimal amount of MeCN , and ether was added leading to the precipitation of the dark purple solid 4 ($199 \mathrm{mg}, 90 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}) 19.70$ (br s, 6H) 14.85 (br s 4H) 14.08 (br s, 6H) 8.38 (br s 12H). IR v_{NO} : 1506 and $1270 \mathrm{~cm}^{-1}$.

Synthesis of (DIM)Fe(NO) $\mathbf{2}_{2}$ 5. To a J-Young tube containing $4(30 \mathrm{mg}, 0.06 \mathrm{mmol})$ dissolved in d_{8}-THF was added (Bpin) ${ }_{2} \mathrm{Pz}(80.8 \mathrm{mg}, 0.24 \mathrm{mmol})$ also dissolved in $\mathrm{d}_{8}-\mathrm{THF}$, resulting in a color change from yellow to dark purple. After heating at $80^{\circ} \mathrm{C}$ for two hours, the reaction was complete. Removal of the solvent in vacuo and rinsing ($3 \times 5 \mathrm{~mL}$) with cold pentane $\left(-35^{\circ} \mathrm{C}\right)$ gave the purple solid $5\left(23 \mathrm{mg}, 88 \%\right.$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{8}-\mathrm{THF}, 298 \mathrm{~K}$) $\delta(\mathrm{ppm}) 6.86(\mathrm{~s}, 4 \mathrm{H}) 2.23(\mathrm{~s}, 6 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}) 2.11(\mathrm{~s}, 12 \mathrm{H}) . \mathrm{IR}_{\mathrm{NO}}: 1697$ $1645 \mathrm{~cm}^{-1}$.

Oxidation of (DIM)Fe(NO) $\mathbf{2}_{2}$. To a J-Young tube containing 5 ($25 \mathrm{mg}, 0.06 \mathrm{mmol}$) dissolved in d_{8}-THF was added $\left[\mathrm{Fe}(\mathrm{Cp})_{2}\right](\mathrm{OTf})(19 \mathrm{mg}, 0.06 \mathrm{mmol})$ also dissolved in d_{8}-THF. A slight color change was observed from dark purple to maroon, and after 30 minutes the ${ }^{1} \mathrm{H}$ NMR signals for 5 were absent. This solution was then transferred to an EPR tube for data collection.

1. K. Oshima, T. Ohmura and M. Suginome, Chem. Commun., 2012, 48, 8571-8573.
2. M. B. Ansell, G. E. Kostakis, H. Braunschweig, O. Navarro and J. Spencer, Adv. Synth. Catal., 2016, 358, 3765-3769.

Spectral Data

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of borylated azobenzene in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of reaction between azobenzene, $(\mathrm{Bpin})_{2}$, and 4,4'-bpy in d_{8}-toluene

Figure S3. ${ }^{13} \mathrm{C}$ NMR in toluene of borylated azobenzene. Unlabeled peaks are $4,4^{\prime}$-bpy and toluene

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum of reaction between benzo-c-cinnoline, (Bpin) $)_{2}$, and $4,4^{\prime}$-bpy in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure $\mathbf{S 5}$ Aromatic region of ${ }^{1} \mathrm{H}$ NMR spectrum of benzo(c)cinnoline, azobenzene before addition of $4,4^{\prime}$-bpy (bottom) and after 20 hours of heating with $4,4^{\prime}$-bpy and (Bpin) $)_{2}$ (top) showing almost complete consumption of bcc, formation of borylated bcc , and unreacted azobenzene.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of borylated amine in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of borylated $\mathrm{Ph}_{2} \mathrm{Tz}$ in d_{8}-THF

Figure S8. ${ }^{13} \mathrm{C}$ NMR in toluene of borylated diphenyl tetrazine. Unlabeled peaks are 4,4'-bpy and toluene

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of N / O borylated nitrosobenzene in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{DIMFeCl}_{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$. Unlabeled peaks are residual acetonitrile and toluene.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of (DIM) $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{MeCN})$ in $\mathrm{CD}_{3} \mathrm{CN}$

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum of (DIM) $\mathrm{Fe}(\mathrm{NO})_{2}$ in $\mathrm{d}_{8}-\mathrm{THF}$

Figure S13. IR spectrum of (DIM) FeCl_{2} (KBr press)

Figure S14. IR spectrum of (DIM)Fe($\left.\mathrm{NO}_{3}\right)_{2}(\mathrm{MeCN})$ (KBr press)

Figure S15. IR spectrum of (DIM) $\mathrm{Fe}(\mathrm{NO})_{2}$ (KBr press)

Figure S16. IR spectrum of $\left[(\mathrm{DIM}) \mathrm{Fe}(\mathrm{NO})_{2}\right]^{+}$

EPR Simulation

The experimental EPR spectrum was simulated using EasySpin ${ }^{1}$ to obtain the coupling constants reported in this manuscript. As seen in Figure S15, despite relative intensities being different, the coupling constants match well. Attempts to model the spectrum with coupling to 3 nitrogens, 2 equivalent and 1 inequivalent, were unsuccessful.

Figure S17. Simulated and experimental EPR spectra overlaid for $\left[(\mathrm{DIM}) \mathrm{Fe}(\mathrm{NO})_{2}\right]^{+}$

1. S. Stoll, A. Schweiger, J. Magn. Reson., 2006, 178(1), 42-55.

Crystallographic details

MSC\#19051 (Bpin) ${ }_{2}$ Bpy (3)

CCDC: 1951270
Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a concentrated solution of 3 in acetonitrile. A yellow crystal (approximate dimensions $0.25 \times 0.23 \times 0.12 \mathrm{~mm} 3$) was placed onto the tip of a MiTeGen pin and mounted on a Bruker Kappa Duo diffractometer equipped with an Apexll CCD detector at 293 K.

Data collection

The data collection was carried out using Mo K α radiation ($\lambda=0.71073 \AA$, graphite monochromator) with a frame time of 10 seconds and a detector distance of 60 mm . A collection strategy was calculated and complete data to a resolution of $0.77 \AA$ Å with a redundancy of 4 were collected. Six major sections of frames
were collected with 0.500ω and ϕ scans. The total exposure time was 7.48 hours. The frames were integrated with the Bruker SAINT ${ }^{1}$ software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 22487 reflections to a maximum θ angle of 27.49° ($0.77 \AA$ resolution). The final cell constants of $a=6.5143(6) \AA, b=10.6792$ (9) \AA, $c=16.5422(14) \AA, \beta=$ $98.808(5)^{\circ}$, volume $=1137.23(17) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 7792 reflections above $20 \sigma(I)$ with $6.277^{\circ}<2 \theta<48.60^{\circ}$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). ${ }^{2}$ The ratio of minimum to maximum apparent transmission was 0.878 . Table S1 contains additional crystal and refinement information.

Structure solution and refinement

The space group P 2_{1} /n was determined based on intensity statistics and systematic absences. The structure was solved using XS (Sheldrick, 2008) ${ }^{3}$ and refined using full-matrix least-squares on F^{2} within the Olex2 suite. 4 A direct-methods solution was calculated, which provided most nonhydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 = 0.0550 and $w R 2=0.1765$ (F2, all data). The goodness-of-fit was 1.016 . On the basis of the final model, the calculated density was $1.198 \mathrm{~g} / \mathrm{cm} 3$ and $F(000), 440 \mathrm{e}-$.

Twinning

The structure is non-merohedrally twinned. Two major and one minor domain could be identified and indexed. ${ }^{5}$ In the refinement only two components were considered, with a domain ratio of 56:44. The twin element is 180 degree rotation about 001 in reciprocal space, twin law by the rows: $100,0-10$, 0.791 0-1.

MSC\#19088 (DIM)Fe($\left.\mathrm{NO}_{3}\right)_{2}(\mathrm{MeCN})(4)$

Single crystals suitable for X-ray diffraction analysis were grown by solvent diffusion of ether into a concentrated solution of 4 in acetonitrile. A red crystal (approximate dimensions $0.42 \times 0.17 \times 0.12$ mm 3) was placed onto the tip of a MiTeGen pin and mounted on a Bruker Kappa Duo diffractometer equipped with an ApexII CCD detector at 173.0 K.

CCDC: 1951269

Data Collection

The data collection was carried out using Mo K α radiation ($\lambda=0.71073 \AA$, graphite monochromator) with a frame time of 0.5 seconds and a detector distance of 40 mm . A collection strategy was calculated and complete data to a resolution of $0.84 \AA$ with a redundancy of 4 were collected. Four major sections of frames were collected with $0.50 \% \omega$ and ϕ scans. The total exposure time was 34.20 hours. The frames were integrated with the Bruker SAINT ${ }^{1}$ software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 41333 reflections to a maximum θ angle of $25.05^{\circ}(0.84 \AA$ resolution). The final cell constants of $a=11.6059(10) \AA, b=15.9471(13) \AA, c=$
17.0224(11) \AA, volume $=3150.5(6) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 9962 reflections above $20 \sigma(I)$ with $4.956^{\circ}<2 \theta<50.09^{\circ}$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). ${ }^{2}$ The ratio of minimum to maximum apparent transmission was 0.922.Table S2 contains additional crystal and refinement information.

Structure solution and refinement

The space group Pca_{1} was determined based on intensity statistics and systematic absences. The structure was solved using XT^{3} and refined using full-matrix least-squares on F^{2} within the OLEX2 suite. ${ }^{4}$ An intrinsic phasing solution was calculated, which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining nonhydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters. The final full matrix least squares refinement converged to R1 $=0.0263$ and $w R 2=0.0664$ (F^{2}, all data). The goodness-of-fit was 1.044. On the basis of the final model, the calculated density was $1.313 \mathrm{~g} / \mathrm{cm} 3$ and $\mathrm{F}(000), 1312 \mathrm{e}-$. The remaining electron density is minuscule.

MSC\#19087 (DIM)Fe(NO) 2 (5)

CCDC: 1951267
Single crystals suitable for X-ray diffraction analysis were grown by slow diffusion of pentane into a concentrated solution of 5 in THF. An orange crystal (approximate dimensions $0.57 \times 0.18 \times 0.08 \mathrm{~mm} 3$) was placed onto the tip of a MiTeGen pin and mounted on a Bruker Kappa Duo diffractometer equipped with an ApexII CCD detector at 173 K .

Data Collection

The data collection was carried out using Mo K α radiation ($\lambda=0.71073 \AA$, graphite monochromator) with a frame time of 90 seconds and a detector distance of 40 mm . A collection strategy was calculated and complete data to a resolution of $0.84 \AA$ Aith a redundancy of 3.5 were collected. The total exposure time was 17.03 hours. The frames were integrated with the Bruker SAINT ${ }^{1}$ software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 30859 reflections to a maximum θ angle of 25.10° ($0.84 \AA$ resolution). The final cell constants of $a=$ $14.0826(9) \AA, b=17.5521(15) A, c=18.3081(17) \AA$, volume $=4525.4(10) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 2638 reflections above $20 \sigma(I)$ with $4.449^{\circ}<2 \theta<45.61^{\circ}$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). ${ }^{2}$ The ratio of minimum to maximum apparent transmission was 0.890 . Table S3 contains additional crystal and refinement information.

Structure solution and refinement

The space group Pbca was determined based on intensity statistics and systematic absences. The structure was solved using XT^{3} and refined using full-matrix least-squares on F^{2} within the OLEX2 suite. ${ }^{4}$ An intrinsic phasing solution was calculated, which provided most non-hydrogen atoms from the E-map. Full-matrix least squares / difference Fourier cycles were performed, which located the remaining nonhydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. The
hydrogen atoms were placed in ideal positions and refined as riding atoms with relative isotropic displacement parameters．The final full matrix least squares refinement converged to R1 $=0.0462$ and $w R 2=0.0987$（F2，all data）．The goodness－of－fit was 1．005．On the basis of the final model，the calculated density was $1.281 \mathrm{~g} / \mathrm{cm} 3$ and $\mathrm{F}(000), 1840 \mathrm{e}-$ ．The remaining electron density is minuscule and mainly located around the iron center．

Table S1．Crystal data and structure refinement for 19051.

Empirical formula	C11 H16 B N O2
Formula weight	205.06
Crystal color，shape，size	yellow block， $0.25 \times 0.23 \times 0.12 \mathrm{~mm}{ }^{3}$
Temperature	293 K
Wavelength	0.71073 Å
Crystal system，space group	Monoclinic，P 1 21／n 1
Unit cell dimensions	$a=6.5143(6) \AA$ 回 $=90^{\circ}$ ．
	$b=10.6792(9) \AA$ 成 \quad O $=98.808(5)^{\circ}$ ．
	c＝16．5422（14）$\AA \quad$ 回 $=90^{\circ}$ ．
Volume	1137．23（17）\AA^{3}
Z	4
Density（calculated）	$1.198 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.080 \mathrm{~mm}^{-1}$
F（000）	440
Data collection	
Diffractometer	Kappa Apex II Duo，Bruker
Theta range for data collection	2.278 to 27.493° ．
Index ranges	$-8<=\mathrm{h}<=8,0<=\mathrm{k}<=13,0<=1<=21$
Reflections collected	22487
Independent reflections	4619 ［Rint $=0.0372$ ］
Observed Reflections	2692
Completeness to theta $=25.242^{\circ}$	100.0 \％
Solution and Refinement	
Absorption correction	Semi－empirical from equivalents
Max．and min．transmission	1 and 0.88
Solution	Intrinsic methods
Refinement method	Full－matrix least－squares on F^{2}
Weighting scheme	$w=\left[\mathrm{T}^{2} \mathrm{Fo}^{2}+A P^{2}+B P\right]^{-1}$ ，with
	$\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3, \mathrm{~A}=, \mathrm{B}=$
Data／restraints／parameters	4619／ 0 ／ 141
Goodness－of－fit on F^{2}	1.016
Final R indices［ $1>2$ ？$(1)]$	$\mathrm{R} 1=0.0550, w R 2=0.1410$
R indices（all data）	$\mathrm{R} 1=0.1102, w R 2=0.1765$

Extinction coefficient
Largest diff. peak and hole

Twin Details

Type, twin law
Twin element, domain ratio
n/a
0.162 and -0.206 e. \AA^{-3}
non-merohedral, $100,0-10,-0.7910-1$
180° rotation in reciprocal space about $100,55.9: 44.1$

Table S2. Crystal data and structure refinement for 19088.

Empirical formula	C28 H37 Fe N7 O6
Formula weight	623.49
Crystal color, shape, size	red plate, $0.42 \times 0.17 \times 0.12 \mathrm{~mm}^{3}$
Temperature	173.0 K
Wavelength	0.71073 Å
Crystal system, space group	Orthorhombic, Pca_{1}
Unit cell dimensions	$a=17.0228(4) \AA \quad \square=90^{\circ}$.
	$\mathrm{c}=15.9579(5) \AA$ 成 \quad O $=90^{\circ}$.
Volume	3154.98(16) \AA^{3}
Z	4
Density (calculated)	$1.313 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.528 \mathrm{~mm}^{-1}$
F(000)	1312
Data collection	
Diffractometer	Kappa Apex II Duo, Bruker
Theta range for data collection	2.123 to 25.078°.
Index ranges	-20<=h<=20, -13<=k<=13, -19<=\|<=19
Reflections collected	38729
Independent reflections	5587 [Rint $=0.0408$]
Observed Reflections	5084
Completeness to theta $=25.078^{\circ}$	99.9 \%

Solution and Refinement

Absorption correction Semi-empirical from equivalents
Max. and min. transmission
Solution
Refinement method
Weighting scheme

Data / restraints / parameters
0.7452 and 0.6873

Intrinsic methods
Full-matrix least-squares on F^{2}
$\mathrm{w}=\left[\mathrm{B}^{2} \mathrm{Fo}^{2}+\mathrm{AP}^{2}+\mathrm{BP}\right]^{-1}$, with
$\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3, \mathrm{~A}=, \mathrm{B}=$
5587 / 349 / 390
Goodness-of-fit on F^{2}

Final R indices [$1>2$? (1)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
$R 1=0.0263, w R 2=0.0643$
$R 1=0.0323, w R 2=0.0664$
0.007(5)
n/a
0.196 and -0.179 e. \AA^{-3}

Table S3. Crystal data and structure refinement for 19087.

Empirical formula
Formula weight
Crystal color, shape, size
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)

Data collection

Diffractometer
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed Reflections
Completeness to theta $=25.061^{\circ}$

Solution and Refinement

Absorption correction
Max. and min. transmission
Solution
Refinement method
Weighting scheme

Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2$? (I)]

C22 H28 Fe N4 O2
436.33
orange plate, $0.57 \times 0.18 \times 0.08 \mathrm{~mm}^{3}$
173 K
0.71073 Å

Orthorhombic, Pbca
$a=17.5520(15) \AA \quad$ A $=90^{\circ}$.
$b=14.0826(9) \AA \quad$ 回 $=90^{\circ}$.
$c=18.3080(17) \AA \quad$ 回 $=90^{\circ}$.
4525.3(6) \AA^{3}

8
$1.281 \mathrm{~g} / \mathrm{cm}^{3}$
$0.690 \mathrm{~mm}^{-1}$
1840

Kappa Apex II Duo, Bruker
2.162 to 25.061°.
$-20<=\mathrm{h}<=20,-12<=\mathrm{k}<=16,-21<=1<=21$
28523
4007 [Rint $=0.1110$]
2493
99.8 \%

Semi-empirical from equivalents
0.7452 and 0.6632

Intrinsic methods
Full-matrix least-squares on F^{2}
$w=\left[?^{2} F^{2}+A P^{2}+B P\right]^{-1}$, with
$\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3, \mathrm{~A}=, \mathrm{B}=$
4007 / 0 / 270
1.005
$R 1=0.0462, w R 2=0.0832$

R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$R 1=0.0986, w R 2=0.0987$
n/a
0.272 and -0.290 e. \AA^{-3}

1 SAINT, Bruker Analytical X-Ray Systems, Madison, WI, current version.
2 SADABS, Bruker Analytical X-Ray Systems, Madison, WI, current version.
3 G. M. Sheldrick, Acta Cryst., 2008, A64, 112-122. G. M. Sheldrick, Acta Cryst, 2015, A71, 3-8
4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341

5 G. M. Sheldrick, CELL NOW, University of Göttingen, Germany, (2018).

Computational Details

DFT ${ }^{1}$ calculations were carried out using Gaussian 16^{2}. Geometry optimizations were performed at the B3LYP/6-31G(d,p) level of theory ${ }^{3}$ for organic molecules, and TPSSH/def2TZVP4,5 level of theory for all iron containing species. All optimized structures were confirmed to be minima by analyzing the harmonic frequencies. ${ }^{6-8}$ Cartesian Coordinates are summarized in Table S1.

1. Parr, R.G.; Yang, W. Density-functional theory of atoms and molecules; Oxford University Press: New York, 1989.
2. Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
3. (a) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. (b) Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B 1988, 37, 785. (c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (d) Stephens, P.J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M.J. J. Phys. Chem. 1994, 98, 11623
4. Staroverov, V. N.; Scuseria, G. E.; Tao. J.; Perdew, J. P. J. Chem. Phys. 2003, 91, 146401.
5. Schäfer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829-5835.
6. Becke, A.D. J. Chem. Phys., 1993, 98, 1372.
7. (a) Schlegel, H. B.; McDouall, J. J. in Computational Advances in Organic Chemistry; Oeretir, C; Csizmadia, I. G., Eds.; Kluwer Academic: Amsterdam, The Netherlands, 1991. (b) Bauernschmitt, R.; Ahlrichs, R. J. Chem. Phys. 1996, 104, 9047.
8. Schlegel, H. B. WIREs Comput. Mol. Sci. 2011, 1, 790.

Corresponding orbital analysis

The unrestricted corresponding orbital diagram in Figure S 16 of $\left[\mathrm{DIMFe}(\mathrm{NO})_{2}\right]^{+}$shows much delocalization of the paired electrons across the $\mathrm{Fe}(\mathrm{NO})_{2}$ fragment, supporting the assignment of antiferromagnetic coupling between iron unpaired electrons and nitrosyl unpaired electrons. Interestingly, the singly occupied alpha electron appears to lie in a d orbital with minimal delocalization. However, when the isovalue is decreased (Figure S17), the orbital shows character on the nitrosyl ligands as well as the DIM ligands, which is supported by the spin density plot, as well as the experimental EPR data.

Figure S18. Corresponding orbital diagram for [(DIM)Fe(NO) $)_{2}{ }^{+}$(isovalue 0.05 au$)$

DIMFe($\mathbf{k}^{2}-\mathrm{ON}=\mathrm{NO}$) analysis

Geometry optimization of $S=2$ (DIM)Fe(ONNO), starting from a tetrahedral structure, yielded a planar structure (Figure S18). This shows normal $\mathrm{N}=\mathrm{C}-\mathrm{C}=\mathrm{N}$ distances within DIM and distances consistent with a dianionic $[\mathrm{O}-\mathrm{N}=\mathrm{N}-\mathrm{O}]^{2-}$ hyponitrite bonding.

Calculated distances match well the values, typically $\mathrm{N}=\mathrm{N} 1.24 \AA$ and $\mathrm{N}-\mathrm{O} 1.37 \AA$, found among 5 structure determinations (KIRPUZ, XOCYEW, MEHQAT, MORSUH, VIKQAI) of coordinated hyponitrite.

While $S=2$ would appear to be an unfavorable spin state for a planar structure, it has been shown, by both experiment and DFT energy calculations of this structural change, ${ }^{1}$ that the energy penalty for being planar can be overcome by strongly π donating ligands, together with steric preferences for an angle X-Fe-X of 90° vs. 109°. This modest energy penalty is also presumably why a tetradentate ligand can yield planar Fe(II) as the lowest energy structure.

1. X. Wurzenberger, H. Piotrowski, P. Kluefers, Angew. Chem. Int. Ed., 2011, 50, 4974-4978.

	kcal/mol	(TMS) ${ }_{2} \mathrm{Pz}$ Derivative	(Bpin) ${ }_{2}$ bpy derivative
	-24.6	-50.4	-33.7
	-47.8	-73.1	-56.9
	-21.4	-47.2	-30.5
	-9.4	-29.3	-18.5
	-52.3	-76.6	-61.4

Table S4. Thermodynamics for reductive transformations using (Bpin) ${ }_{2} \mathrm{Pz}$, and comparisons to (TMS) ${ }_{2} \mathrm{Pz}$ as well as (Bpin$)_{2} \mathrm{Bpy}$. The value for NO^{-}is for triplet product, and singlet is calculated to be $10 \mathrm{kcal} / \mathrm{mol}$ less stable. The absolute energy of anions will certainly be influenced by cations, but we evaluate the free anion thermodynamics for the trends that they convey.

To gain insight into the potential reactivity of (Bpin$)_{2} \mathrm{Pz}$, computations were done at the B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ level of theory on reductive borylations that had been previously calculated for (TMS) ${ }_{2} \mathrm{Pz}$. While overall reagent effectiveness hinges on mechanism, knowing thermodynamics is fundamental. The calculated geometry of $(\mathrm{Bpin})_{2} \mathrm{Pz}$ is planar with BO_{2} eclipsing the planar nitrogen rings; BO and BN distances, 1.38 and $1.42 \AA$, respectively, both indicate pi bonding. The same is true for (Bpin) $)_{2}$ bpy. Distances agree well with experiment.

We addressed the questions of whether the boron reagent is more or less powerful for deoxygenation, and also whether the $4,4^{\prime}$ bpy boron reagent is more or less powerful then the single ring (pyrazine) version. The reaction free energies for borylation of diphenyl tetrazine is favorable, as is deoxygenation
of nitrate. The 4,4'-bipyridine reagent, (Bpin) $)_{2} \mathrm{Bpy}$, is uniformly more powerful than (Bpin) ${ }_{2} \mathrm{Pz}$ by ~ 9 $\mathrm{kcal} / \mathrm{mol}$, which is consistent with Mashima's and Suginome's experimental observations. The pyrazinebased data show that silylation is uniformly more exergonic than borylation by $20-26 \mathrm{kcal} / \mathrm{mol}$. The constancy of these shifts over change from complexed (see chromium nitrosyl example in Table) to free substrate, and involving transfer between nitrogens in different heterocycles, is remarkable; they certainly show Si is more potent than B , and that the bpy transfer reagent is more potent than the pyrazine analog. Furthermore, perhaps the very favorable thermodynamics of (TMS) ${ }_{2} \mathrm{Pz}$ has contributed to selectivity issues with deoxygenation of our compounds, and the "milder" (Bpin) $)_{2} \mathrm{Pz}$ may lead to enhanced selectivity. Both reduction of nitrate to nitrite, then nitrite to NO^{-}, are thermodynamically favorable for each reagent, consistent with our expectations for pentavalent and trivalent nitrogen being good oxidizing agents. Deoxygenation of nitrate is more exothermic than nitrite by $26 \mathrm{kcal} / \mathrm{mol}$. Independent of reagent, oxidants ranked according to decreasing exergonic character are $\mathrm{CrNO}>\mathrm{NO}_{3}{ }^{-}>$ $\mathrm{OPPh}_{3}>\mathrm{NO}_{2}>\mathrm{Ph}_{2} \mathrm{Tz}$.

Table S5. Cartesian coordinated (in Å) for all optimized species.

$\left[(\mathrm{DIM}) \mathrm{Fe}(\mathrm{NO})_{2}\right]^{+}$

Fe	-0.000083	-0.484814	-0.880121	C	-6.918353	-0.227135	-0.426009
N	0.256686	-2.191169	-0.994137	H	-7.092962	-0.909102	-1.263569
N	1.296044	0.374468	0.455137	H	-7.453829	-0.629453	0.437282
0	0.401821	-3.286009	-1.356535	H	-7.359794	0.736571	-0.681958
N	-1.295791	0.177043	0.564002	C	-2.672379	2.500111	-0.485132
C	-2.712989	0.106679	0.368707	H	-2.554779	3.123415	0.407427
N	-0.258273	0.342839	-2.376476	H	-1.675969	2.323539	-0.895783
C	2.713425	0.251964	0.287988	H	-3.236743	3.083184	-1.212403
C	5.446442	-0.054028	-0.162856	C	-1.500981	1.494767	2.637139
C	-0.750613	0.819147	1.538626	H	-1.347855	2.577429	2.592544
0	-0.405938	0.631059	-3.492738	H	-2.566515	1.288523	2.563921
C	0.751630	0.849598	1.521474	H	-1.133456	1.160850	3.610474
C	-3.387336	1.210905	-0.170310	C	1.503101	1.411674	2.681500
C	-5.445357	-0.100765	-0.140043	H	1.348079	0.793142	3.570845
C	3.391000	-0.799788	0.921459	H	2.568780	1.458113	2.468366
C	-3.366025	-1.104044	0.650389	H	1.138015	2.413039	2.922322
C	-4.732701	-1.175899	0.399498	C	2.677546	-1.765192	1.833229
C	-4.753652	1.076611	-0.420141	H	2.548362	-1.349492	2.837969
C	3.363559	1.149436	-0.572705	H	1.686065	-2.024280	1.455652
C	4.756914	-0.932080	0.673450	H	3.248800	-2.687229	1.937411
C	4.731638	0.981868	-0.769672	C	2.613788	2.272438	-1.241198
H	-5.288349	1.918687	-0.845602	H	1.895865	1.897054	-1.975872
H	-5.256041	-2.097407	0.630866	H	2.051636	2.872566	-0.520584
H	5.294494	-1.744765	1.149721	H	3.302159	2.935763	-1.763745
H	5.253197	1.680143	-1.415163	C	6.917120	-0.233694	-0.431576
C	-2.618598	-2.278446	1.226932	H	7.072560	-0.795624	-1.358077
H	-1.910369	-2.698572	0.507202	H	7.420500	0.728294	-0.544624
H	-2.046295	-2.000484	2.116001	H	7.405543	-0.784072	0.373845
H	-3.309746	-3.072094	1.508687				

(DIM)Fe(NO) ${ }_{2}$

Fe	0.005517	0.169341	0.929338
C	4.679816	-1.209027	0.175236
H	5.202000	-2.142412	0.360530
C	-2.628258	-0.067534	-0.302896
C	-3.316176	1.148940	-0.415592
C	2.556881	-2.550687	-0.115176
H	3.148012	-3.352743	0.327971
H	2.310490	-2.844976	-1.141288
H	1.615166	-2.466594	0.429843
C	5.390797	-0.009398	0.199715
C	1.528623	-0.453265	-2.979627
H	2.592773	-0.338405	-2.781320
H	1.235460	0.268495	-3.747623
H	1.359749	-1.451221	-3.397019
C	-2.585246	2.419177	-0.763174
H	-1.994226	2.312131	-1.676641
H	-1.891259	2.699271	0.032447
H	-3.288465	3.240089	-0.908342
C	-5.381185	-0.006517	0.175074
C	-2.533340	-2.549450	0.181326
H	-1.916469	-2.542612	1.083146
H	-1.860480	-2.722639	-0.661843
H	-3.223078	-3.391954	0.247517
C	3.324259	1.189409	-0.297823
C	-0.715413	-0.271417	-1.725524
C	0.728162	-0.255615	-1.729631
C	2.593256	2.485645	-0.530062
H	1.988787	2.755634	0.338967
H	1.910830	2.419929	1.380615

H	3.299093	3.295908	-0.718154
C	2.643318	-0.035837	-0.311402
C	3.310389	-1.247369	-0.083529
C	-1.519033	-0.473828	-2.972891
H	-2.583264	-0.510256	-2.747632
H	-1.234801	-1.404882	-3.472201
H	-1.343749	0.338234	-3.685942
C	-3.289646	-1.254565	0.039802
C	4.695396	1.175287	-0.044881
H	5.232551	2.118506	-0.037409
C	-4.688650	1.154030	-0.171103
H	-5.229229	2.091430	-0.255832
C	-4.663733	-1.198510	0.272000
H	-5.184819	-2.113653	0.534902
N	-1.220690	-0.093435	-0.524960
N	1.236619	-0.053356	-0.534852
N	-0.037458	1.661220	1.573294
N	0.002730	-1.014234	2.049637
0	-0.083776	2.720074	2.087708
0	-0.039013	-1.789431	2.933844
C	-6.859808	0.033602	0.468691
H	-7.336617	-0.922595	0.242223
H	-7.042334	0.248854	1.526923
H	-7.360470	0.810165	-0.113951
C	6.865115	0.011046	0.516200
H	7.369300	0.837473	0.010195
H	7.032171	0.134496	1.591543
H	7.350179	-0.919752	0.214167

(Bpin) $)_{2} \mathrm{Pz}$

C	0.667404	1.170377	-0.245824
C	-0.667407	1.170388	-0.245764
C	-0.667404	-1.170400	0.245709
C	0.667406	-1.170411	0.245649
H	1.239129	2.068228	-0.433447
H	-1.239135	2.068248	-0.433337
H	-1.239130	-2.068253	0.433324
H	1.239134	-2.068273	0.433213
N	1.430152	-0.000023	-0.000118
N	-1.430153	0.000001	0.000009
B	2.844624	-0.000007	-0.000044
B	-2.844625	-0.000001	0.000005
0	3.599089	-1.115369	0.307080
0	3.599096	1.115367	-0.307108
0	-3.599093	1.115368	-0.307087
0	-3.599092	-1.115369	0.307100
C	-4.967875	-0.785334	-0.047638
C	-4.967871	0.785340	0.047668
C	-5.197435	1.295637	1.473370
H	-4.970766	2.364228	1.505881
H	-6.233382	1.150990	1.792442
H	-4.539866	0.786339	2.182892
C	-5.905180	1.487490	-0.926327
H	-6.944016	1.196747	-0.740554
H	-5.826903	2.570197	-0.796127
H	-5.654360	1.251981	-1.961382
C	-5.197459	-1.295630	-1.473337
H	-4.970792	-2.364222	-1.505851
H	-6.233410	-1.150981	-1.792395

H	-4.539898	-0.786332	-2.182866
C	-5.905173	-1.487481	0.926370
H	-6.944011	-1.196737	0.740611
H	-5.826901	-2.570189	0.796169
H	-5.654339	-1.251972	1.961421
C	4.967868	0.785342	0.047676
C	4.967878	-0.785332	-0.047627
C	5.197401	1.295642	1.473382
H	6.233341	1.151000	1.792476
H	4.970726	2.364233	1.505886
H	4.539818	0.786343	2.182890
C	5.905195	1.487493	-0.926302
H	5.826913	2.570200	-0.796105
H	6.944029	1.196754	-0.740506
H	5.654398	1.251981	-1.961361
C	5.905157	-1.487473	0.926404
H	5.826892	-2.570181	0.796204
H	6.943998	-1.196724	0.740668
H	5.654298	-1.251962	1.961449
H	5.197497	-1.295631	-1.473320
6.233454	-1.150977	-1.792356	
	4.970836	-2.364224	-1.505835
H	4.539949	-0.786340	-2.182866

(DIM)Fe(ONNO)

Fe $\quad-0.000872-0.8389450 .238080$
C
$-2.548247-1.050915-2.178232$

H $\quad-1.950613-0.322022-2.732556$

H
$-1.859786-1.787385-1.753663$

(TMS) ${ }_{2} \mathrm{Pz} 2$

C	-0.772372	0.974216	-0.095371	C	-3.976595 3.	$3.705452-0$	-0.914817
C	0.551989	0.974246	0.091958	H	-5.072165 3	$3.681129-0$	-0.930716
C	0.551941	3.341323	0.092024	H	-3.684574 4	$4.627892-0$.	-0.402133
C	-0.772425	3.341302	-0.095272	H	-3.628398 3	$3.770427-1$	-1.950569
H	-1.304079	0.034329	-0.175008	(TMS) N_{3}			
H	1.083897	0.034366	0.170358				
H	1.083804	4.281228	0.170505	Si	-0.665617	70.000075	50.019886
H	-1.304171	4.281181	-0.174860	C	-0.759617	1.552969	1.082608
Si	3.094751	2.158155	0.058724	H	-0.685214	42.457532	20.470787
Si	-3.315118	2.158104	-0.058463	H	-1.709479	91.593822	21.627902
N	1.337646	2.157792	0.213495	H	0.046737	1.581910	1.823390
N	-1.558243	2.157739	-0.215782	C	-0.759253	-1.546447	71.091919
C	3.755171	0.608291	0.911276	H	-1.709133	-1.584227	71.637408
H	3.463843	-0.312629	0.395479	H	-0.684642	$2-2.454647$	$7 \quad 0.485538$
H	4.850712	0.632646	0.928612	H	0.047073	-1.570740	01.832893
H	3.405712	0.540207	1.946405	C	-1.962843	-0.004226	-1.334389
C	3.655008	2.160745	-1.749463	H	-1.864384	0.878159	-1.974290
H	3.279839	3.043988	-2.277903	H	-1.864350	-0.890655	-1.968680
H	4.748309	2.161620	-1.833549	H	-2.973159	-0.002919	-0.911129
H	3.281035	1.278420	-2.280272	N	0.881815	-0.002337	-0.869500
C	3.754925	3.705978	0.915217	N	1.993250	-0.000983	-0.355375
H	4.850467	3.681606	0.932856	N	3.068573	0.000026	0.033011
H	3.463758	4.628145	0.401561				
H	3.405101	3.771548	1.950384				
C	-3.976673	0.607743	-0.909225				
H	-3.684596	-0.312864	-0.393295				
H	-5.072237	0.632071	-0.925021				
H	-3.628701	0.539064	-1.944817				
C	-3.872788	2.161675	1.750521				
H	-3.496940	3.045257	2.277909				
H	-4.965968	2.162504	1.836193				
H	-3.497961	1.279693	2.281296				

$\mathrm{N}(\mathrm{TMS})_{3}$

