Supporting Information

Effects of Organic Ammonium Cations on Isolation of {Ti₄} Cyclic Clusters from Water: An ¹⁷O NMR Study

Weiming Liu,^a Caiyun Liu,^a Wenli Wu,^b Guanyun Zhang,^a Jian Zhang,^c Chen-Ho Tung^a and Yifeng Wang^{*a}

^{*a*} Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

^b Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Keyuan Street No 19, Jinan 250014, China

^c State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China

1. Crystallography

Single crystal X-ray diffraction analysis was performed on a Bruker SMART APEX II diffractometer using Cu-K α radiation ($\lambda = 1.54178$ Å) at 173 K. APEX2, SaintPlus 6.01,¹ SADABS² and Olex2³ were used for indexing, data integration/reduction, absorption correction and refinement. Hydrogen atoms of the organic ammonium cations were added as riding atoms theoretically. The crystallographic data are list in the following table:

Compound	Ti ₄ b-CHexDA	Ti ₄ b-BuDA	Ti ₄ c-OcDA	Ti ₄ c-HMTA
Formula unit	$C_{12}H_{48}N_4O_{36}S_6Ti_4\\$	$C_8H_{44}N_4O_{36}S_6Ti_4$	$C_{36}H_{114.5}Cl_{1.5}N_9O_{45}S_{8.5}Ti_4$	$H_{36}O_{50}S_8Ti_4$
CCDC number	1977579	1977578	1977580	1977581
Moieties	$\begin{array}{l}(C_6H_{16}N_2)_2[Ti_4O_4(OH_2)_8(S\\O_4)_4](SO_4)_2\end{array}$	$\begin{array}{l}(C_4H_{14}N_2)_2[Ti_4O_4(OH_2)_8(S\\O_4)_4](SO_4)_2\end{array}$	$\begin{array}{l}(C_8H_{22}N_2)_{4.5}[Ti_4O_4(OH_2)_4(SO_4)_8](SO_4)_{0.5}{}^{\cdot}1.5HCl{}^{\cdot}3H_2O\end{array}$	$\begin{array}{l} [Ti_4O_4(OH_2)_4(SO_4)_8\\ H_8]\cdot 10H_2O \end{array}$
Formula weight (g/mol)	1208.4	1156.3	1911.0	1284.2
Crystal system	tetragonal	tetragonal	triclinic	tetragonal
Space group (Nr.)	I4/mcm	I4/mcm	P-1	I-42d
a (Å)	13.7675(2)	13.8316(2)	15.4295(4)	24.0919(2)
b (Å)	13.7675(2)	13.8316(2)	17.3585(5)	24.0919(2)
c (Å)	20.9391(4)	20.2120(4)	18.1126(4)	23.1592(3)
α (°)	90	90	109.769(2)	90
β (°)	90	90	90.193(2)	90
γ (°)	90	90	109.105(2)	90
Volume (Å ³)	3968.88(14)	3866.82(14)	4278.1(2)	13442.1(3)
Ζ	1	4	1	12
Density _{calc} (g/cm ³)	2.022	1.959	1.482	1.892
Abs. Coeff. μ (mm ⁻¹)	10.700	10.944	6.253	10.586
Temperature (K)	173	173	173	173
Total reflections	5055	5413	42809	17257
Min-max 20 (°)	9.084 to 152.578	8.75 to 152.536	5.228 to 153.256	5.294 to 144.96
Unique reflections	1094	1080	16946	6388
$R_1[I \ge 2\sigma(I)]$	0.0858	0.0995	0.1504	0.0439
wR ₂ (all data)	0.1897	0.2269	0.4155	0.1175
R _{int}	0.0407	0.0393	0.1331	0.0328
Goodness of fit on F ²	1.228	1.129	1.045	1.082
Parameters	131	149	987	401
Restraints	108	187	303	359
Largest diff. peak/hole (e Å ⁻³)	0.78/-0.76	1.34/-077	1.65/-1.26	0.54/-0.46

Table S1	. The	crystall	lographic	data
----------	-------	----------	-----------	------

2. Additional characterization

Figure S1. The Raman spectra of the ${Ti_4}$ compounds.

Figure S2. The PXRD spectra of the ${Ti_4}$ compounds.

Ti₄b-CHexDA

Ti₄b-BuDA

Ti₄c-HMTA

Ti₄c-OcDA

Figure S3. The photos of the crystals.

Figure S4. TGA data. The data were recorded on an SDT Q600 instrument from room temperature to ca. 800 °C at a heating rate of 10 °C min⁻¹, under high purity N₂ flow (100 mL min⁻¹).

Figure S5. The ¹⁷O NMR spectra of Ti_4c -OcDA (ca. 0.10 M) dissolved in 1.0 M HCl or H_2SO_4 .

Discussion. For above experiments, ¹⁷O-enriched Ti₄c-OcDA was first prepared using an ¹⁷O-enriched solution (5%). ¹⁷O-enriched Ti₄c-OcDA was then dissolved in 5% ¹⁷O-enriched 1.0 M HCl or H₂SO₄. The concentration of Ti₄c-OcDA was ca. 0.10 M. Thus, the concentration of Ti⁴⁺ was ca. 0.40 M. The three peaks of μ_2 -O suggest Ti₄c decomposed in prior to the NMR measurements. Moreover, according to the peak area analysis, the concentrations of μ_2 -O are estimated to be 0.11 and 0.10 M in the two solutions, respectively. The much lower concentrations of μ_2 -O than that of Ti⁴⁺ clearly indicate Ti₄c decomposed.

Figure S6. ¹⁷O NMR spectra of TiCl₄ with and without added LiCl. It can be seen that LiCl leads to little change to the speciation.

Figure S7. The packing diagram of $\{Ti_{18}O_{27}\}$ clusters in $\{Ti_{18}O_{27}\}$ -TBAC.⁴ The TBA⁺ cations assemble into a "honeycomb" for accommodating the $\{Ti_{18}O_{27}\}$ clusters, Cl⁻ anions and solvent H₂O.

Figure S8. The packing diagram of $\{Ti_6O_8\}$ cluster in Ti_6 -TBAC.⁵ The TBA⁺ cations are organized into hydrophobic shells and inside the shells are located the $\{Ti_6O_8\}$ cluster, Cl⁻and solvent H₂O.

Figure S9. The packing diagram of $\{Ti_6O_8\}$ clusters in $\{Ti_6O_8\}$ -NDS. The $\{Ti_6O_8\}$ clusters are separated by many one-dimensional chain-like fabrics of the assembled 2,7-naphthalenedisulfonate.

3. References

(1) SaintPlus: Data Reduction and Correction Program, version 6.22; Bruker AXS: Madison, WI, 2001.

(2) Sheldrick, G. M. SADABS, A Program for Empirical Absorption Correction; University of Göttingen: Göttingen, Germany, **1998**.

(3) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: a Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Crystallogr.* **2009**, *42*, 339-341.

(4) Zhang, G.; Liu, C.; Long, D.-L.; Cronin, L.; Tung, C.-H.; Wang, Y. Water-Soluble Pentagonal-Prismatic Titanium-Oxo Clusters. *J. Am. Chem. Soc.* **2016**, *138*, 11097-11100.

(5) Zhang, G.; Hou, J.; Li, M.; Tung, C.-H.; Wang, Y. Counteranion-Stabilized Titanium(IV) Isopolyoxocationic Clusters Isolated from Water. *Inorg. Chem.* **2016**, *55*, 4704-4709.