Electronic Supplementary Information

for

Structural, magnetic, redox and theoretical characterization of seven-coordinate first-row transition metal complexes with macrocyclic ligand containing two benzimidazolyl *N*-pendant arms

Bohuslav Drahoš,^a* Ivana Císařová, ^b Oleksii Laguta,^c Vinicius T. Santana,^c Petr Neugebauer^c and Radovan Herchel^a

^a Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc, Czech Republic, Fax: +420 585 634 954. Tel: +420 585 634 429. E-mail: bohuslav.drahos@upol.cz

^b Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00 Prague, Czech Republic

^c Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.

Table of contents:

Figure S1. ESI mass spectra of L and studied complexes 1–4.

Figure S2. IR spectra of studied complexes 1–4.

Figure S3. ¹H–¹³C gs-HMQC NMR spectrum of L.

Figure S4. ¹H–¹³C *gs*-HMBC NMR spectrum of **L**.

Figure S5. HFEPR measurements of a powder sample of compound **2** at 4 K and 180 GHz, 321 GHz and 415 GHz.

Figure S6. In-phase χ_{real} and out-of-phase χ_{imag} molar susceptibilities for 3 at zero and non-zero static magnetic field.

Figure S7. Cyclic voltammogram of CH₃NO₂ in CH₃CN.

Figure S8. Cyclic voltammogram of L.

Figure S9. Comparison of cyclic voltammograms of 1 and [Mn(L2)](ClO₄)₂.

Figure S10. Comparison of cyclic voltammograms of 2 and [Fe(L2)](ClO₄)₂.

Figure S11. Comparison of cyclic voltammograms of 3 and [Co(L2)](ClO₄)₂.

Table S1. Crystal data and structure refinements for studied complexes 1–4.

Table S2. Results of continuous shape measures calculations using program Shape 2.1 for compounds 1–4.

 Table S3. Parameters of one-component Debye model for 3.

ure S1 ESI mass spectra of the ligand L (A) and studied complexes 1 (B,C), 2 (D,E), 3 (F,G), 4 (H,I) (positive mode: A,B,D,F,H; negative mode: C,E,G,I).

Figure S2 IR spectra of the studied ligand L (*dark blue*) and complexes 1 (*light blue*), 2 (*purple*), 3 (*green*) and 4 (*red*).

ure S3 ${}^{1}\text{H}-{}^{13}\text{C}$ *gs*-HMQC NMR spectrum (400 MHz, CDCl₃) of **L** (3,12-bis((1*H*-benzimidazol-2-yl)methyl)-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]octadeca-1(18),14,16-triene) with the residual peak of CHCl₃ at 7.27 ppm (${}^{1}\text{H}$) and CDCl₃ at 77.0 ppm (${}^{13}\text{C}$).

Figure S4 ${}^{1}\text{H}-{}^{13}\text{C}$ *gs*-HMBC NMR spectrum (400 MHz, CDCl₃) of **L** (3,12-bis((1*H*-benzimidazol-2-yl)methyl)-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]octadeca-1(18),14,16-triene) with the residual peak of CHCl₃ at 7.27 ppm (${}^{1}\text{H}$) and CDCl₃ at 77.0 ppm (${}^{13}\text{C}$).

Figure S5 HFEPR measurements of a powder sample of compound **2** at 4 K and 180 GHz, 321 GHz and 415 GHz. At T > 10 K, there was no absorption in any of the tested frequencies (not shown), in agreement with simulated results, which present a significant decrease of the absorption intensity for a small increase in temperature. Relaxation and population of excited states determines the spectra properties at different temperatures. The simulation was performed for a spin S = 2 system using the CASSCF/NEVTP2 calculated *g* values from Table 3, but with D = + 8.2 cm⁻¹ and E/D = 0.29. Anisotropic broadening of 50 GHz was included in the simulation in order to fit the experimental data (HStrain in the *y* direction coincident with the higher *g* value.)

Figure S6 In-phase χ_{real} and out-of-phase χ_{imag} molar susceptibilities for **3** at zero static magnetic field (*left*) and in non-zero static field (*right*). Lines serve as guides for the eyes.

Figure S7 Cyclic voltammogram of **CH₃NO₂** recorded with a glassy carbon electrode at the rate 100 mV/s using 0.1M tetrabutylammonium perchlorate as supporting electrolyte in CH₃CN under argon atmosphere.

Figure S8 Cyclic voltammogram of **L** recorded with a glassy carbon electrode at the rate 100 mV/s using 0.1M tetrabutylammonium perchlorate as supporting electrolyte in CH₃CN under argon atmosphere.

Figure

S9 Comparison of cyclic voltammograms of 1 (*red*) and $[Mn(L2)](ClO_4)_2$ (*blue*) recorded with a glassy carbon electrode at the rate 100 mV/s using 0.1M tetrabutylammonium perchlorate as supporting electrolyte in CH₃CN under argon atmosphere.

Figure S10 Comparison of cyclic voltammograms of **2** (*red*) and $[Fe(L2)](ClO_4)_2$ (*blue*) recorded with a glassy carbon electrode at the rate 100 mV/s using 0.1M tetrabutylammonium perchlorate as supporting electrolyte in CH₃CN under argon atmosphere.

Figure S11 Comparison of cyclic voltammograms of **3** (*red*) and $[Co(L2)](ClO_4)_2$ (*blue*) recorded with a glassy carbon electrode at the rate 100 mV/s using 0.1M tetrabutylammonium perchlorate as supporting electrolyte in CH₃CN under argon atmosphere.

•		•				
Compound	1	2	3	4		
Formula	$C_{61}H_{75}Cl_4Mn_2N_{17}O_{26}$	C ₆₁ H ₇₅ Cl ₄ Fe ₂ N ₁₇ O ₂₆	C ₆₁ H ₇₅ Cl ₄ Co ₂ N ₁₇ O ₂₆	C61H75Cl4Ni2N17O26		
$M_{ m r}$	1714.06	1715.88	1722.04	1721.60		
Temperature (K)	150(2)	150(2)	150(2)	150(2)		
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073		
Crystal system	triclinic	triclinic	triclinic	triclinic		
Space group	P-1	P-1	P-1	P-1		
a (Å)	13.8753(4)	13.8335(4)	13.8322(4)	13.8336(4)		
<i>b</i> (Å)	14.9584(4)	14.9487(4)	14.9418(4)	14.9837(4)		
<i>c</i> (Å)	18.8648(6)	18.7892(5)	18.7191(5)	18.6193(5)		
α (°)	77.3590(10)	77.1470(10)	77.1450(10)	76.9370(10)		
β(°)	76.2910(10)	76.1020(10)	76.4180(10)	76.3470(10)		
$\gamma(^{\circ})$	86.4830(10)	86.4130(10)	86.2140(10)	86.0280(10)		
$V, Å^3$	3711.50(19)	3677.05(18)	3665.99(18)	3652.76(18)		
Z	2	2	2	2		
$D_{\rm calc}$, g cm ⁻³	1.534	1.550	1.560	1.565		
μ , mm ⁻¹	0.575	0.632	0.691	0.754		
F(000)	1772	1776	1780	1784		
θ range for data collection	1.669-25.000	1.143-25.000	1.607-25.000	1.153-27.570		
(°)						
Refl. collected	43364	49826	38740	61058		
Independent refl.	13083	12969	12915	16876		
$R(int)^{a}$	0.0299	0.0191	0.0284	0.0282		
Data/restrains/parameters	13083 / 24/ 992	12969/42/992	12915/24/992	16876/0/ 994		
Completeness to θ (%)	100.0	100.0	100.0	99.8		
Goodness-of-fit on F^2	1.045	1.031	1.028	1.021		
$R_1, WR_2 (I > 2\sigma(I)^{\rm b})$	0.0505, 0.1300	0.0535, 0.1487	0.0457, 0.1206	0.0491, 0.1278		
R_1 , w R_2 (all data) ^b	0.0689, 0.1375	0.0590, 0.1521	0.0607, 0.1273	0.0641, 0.1371		
Largest diff. peak and hole /	1.125 and -1.008	1.120 and -1.196	1.034 and -0.892	1.473 and -1.012		
Â ⁻³						
CCDC number	1942109	1942110	1942111	1942112		
${}^{a}R_{\text{int}} = \Sigma \left F_{\text{o}}^{2} - F_{\text{o},\text{mean}}^{2} \right / \Sigma F_{\text{o}}^{2}, {}^{b}R_{1} = \Sigma \left(\left F_{\text{o}} \right - \left F_{\text{c}} \right \right) / \Sigma \left F_{\text{o}} \right ; wR_{2} = \left[\Sigma w (F_{\text{o}}^{2} - F_{\text{c}}^{2})^{2} / \Sigma w (F_{\text{o}}^{2})^{2} \right]^{1/2}$						

 Table S1 Crystal data and structure refinements for studied complexes 1–4.

$CN = 7^{b}$	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7	JETPY-7
1	27.978	22.283	1.653	6.447	4.998	4.625	17.671
2	28.056	22.370	1.482	6.675	5.225	4.202	18.219
3	28.986	22.755	1.208	6.699	5.117	3.806	18.889
4a ^c	29.553	22.661	1.201	6.818	5.114	3.296	20.061
4b ^c	29.760	23.638	1.112	6.559	5.109	3.232	20.354

Table S2 Results of continuous shape measures calculations using program Shape 2.1 for compounds 1-4.ª

^a the listed values correspond to the deviation between the ideal and real coordination polyhedra, the lowest values are in red color.

^b HP-7 = heptagon, HPY-7 = hexagonal pyramid, PBPY-7 = pentagonal bipyramid, COC-7 = capped octahedron, CTPR-7 = capped trigonal prism.

^c calculations were performed for two crystallographically independent molecules present in the asymmetric unit of **4**.

<i>T</i> /K	$\chi_{\rm S}/(10^{-6} {\rm m}^3 {\rm mol}^{-1})$	$\chi_{\rm T}/(10^{-6} {\rm m}^3 { m mol}^{-1})$	α	τ/(s)
1.9	0.5465	9.3676	0.0360	3.79E-04
2.1	0.4772	8.5063	0.0429	2.95E-04
2.3	0.4723	7.8689	0.0385	2.40E-04
2.5	0.4225	7.2721	0.0410	1.91E-04
2.7	0.3045	6.7651	0.0418	1.50E-04
2.9	0.2364	6.3360	0.0438	1.23E-04
3.1	0.3043	5.9433	0.0284	1.03E-04
3.3	0.4118	5.6110	0.0349	8.89E-05
3.5	0.4167	5.3075	0.0350	7.44E-05
3.7	0.5233	5.0392	0.0077	6.71E-05
3.9	0.3856	4.7989	0.0092	5.59E-05
4.1	0.5628	4.5769	0.0140	5.11E-05
4.3	0.4393	4.3766	0.0068	4.40E-05
4.5	0.6701	4.1932	0.0063	4.05E-05
4.7	0.9442	4.0325	0.0069	4.01E-05
4.9	0.9838	3.8823	0.0072	3.48E-05

 Table S3 Parameters of one-component Debye model for 3.