Electronic Supplementary Information

for

Structural, magnetic, redox and theoretical characterization of seven-coordinate first-row transition metal complexes with macrocyclic ligand containing two benzimidazolyl N-pendant arms

Bohuslav Drahoš, ${ }^{\text {a }}$ Ivana Císařová, ${ }^{b}$ Oleksii Laguta, ${ }^{c}$ Vinicius T. Santana, ${ }^{c}$ Petr Neugebauer ${ }^{c}$ and Radovan Herchel ${ }^{a}$
${ }^{a}$ Department of Inorganic Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic, Fax: +420585634 954. Tel: +420585634 429. E-mail: bohuslav.drahos@upol.cz
${ }^{b}$ Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 12800 Prague, Czech Republic
${ }^{\text {c }}$ Central European Institute of Technology, CEITEC BUT, Purkyňova 656/123, 61200 Brno, Czech Republic.

Table of contents:
Figure S1. ESI mass spectra of L and studied complexes 1-4.
Figure S2. IR spectra of studied complexes 1-4.
Figure S3. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} g s$-HMQC NMR spectrum of \mathbf{L}.
Figure S4. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} g s$-HMBC NMR spectrum of \mathbf{L}.
Figure S5. HFEPR measurements of a powder sample of compound 2 at 4 K and $180 \mathrm{GHz}, 321$ GHz and 415 GHz .

Figure S6. In-phase $\chi_{\text {real }}$ and out-of-phase $\chi_{\text {imag }}$ molar susceptibilities for 3 at zero and non-zero static magnetic field.

Figure S7. Cyclic voltammogram of $\mathbf{C H}_{3} \mathbf{N O}_{2}$ in $\mathrm{CH}_{3} \mathrm{CN}$.
Figure S8. Cyclic voltammogram of L.

Figure S9. Comparison of cyclic voltammograms of $\mathbf{1}$ and $[\mathrm{Mn}(\mathbf{L} 2)]\left(\mathrm{ClO}_{4}\right)_{2}$.
Figure S10. Comparison of cyclic voltammograms of $\mathbf{2}$ and $[\mathrm{Fe}(\mathbf{L} 2)]\left(\mathrm{ClO}_{4}\right)_{2}$.
Figure S11. Comparison of cyclic voltammograms of $\mathbf{3}$ and $[\mathrm{Co}(\mathbf{L 2})]\left(\mathrm{ClO}_{4}\right)_{2}$.
Table S1. Crystal data and structure refinements for studied complexes 1-4.
Table S2. Results of continuous shape measures calculations using program Shape 2.1 for compounds 1-4.

Table S3. Parameters of one-component Debye model for 3 .

ure S1 ESI mass spectra of the ligand $\mathbf{L}(\mathrm{A})$ and studied complexes $\mathbf{1}$ (B,C), 2 (D,E), $\mathbf{3}$ (F,G), $\mathbf{4}(\mathrm{H}, \mathrm{I})$ (positive mode: A,B,D,F,H; negative mode: C,E,G,I).

Figure S2 IR spectra of the studied ligand \mathbf{L} (dark blue) and complexes $\mathbf{1}$ (light blue), $\mathbf{2}$ (purple), $\mathbf{3}$ (green) and 4 (red).

Fig
ure $\mathbf{S 3}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} g s$-HMQC NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of \mathbf{L} (3,12-bis((1 H -benzimidazol-2-yl)methyl)-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]octadeca-1(18),14,16-triene) with the residual peak of CHCl_{3} at $7.27 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and CDCl_{3} at $77.0 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$.

Figure S4 ${ }^{1} \mathrm{H}^{13} \mathrm{C} \mathrm{g}$ - HMBC NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of \mathbf{L} (3,12-bis((1 H -benzimidazol-2-yl)methyl)-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]octadeca-1(18),14,16-triene) with the residual peak of CHCl_{3} at $7.27 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and CDCl_{3} at $77.0 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$.

Figure S5 HFEPR measurements of a powder sample of compound $\mathbf{2}$ at 4 K and $180 \mathrm{GHz}, 321 \mathrm{GHz}$ and 415 GHz . At $\mathrm{T}>10 \mathrm{~K}$, there was no absorption in any of the tested frequencies (not shown), in agreement with simulated results, which present a significant decrease of the absorption intensity for a small increase in temperature. Relaxation and population of excited states determines the spectra properties at different temperatures. The simulation was performed for a spin $S=2$ system using the CASSCF/NEVTP2 calculated g values from Table 3, but with $D=+8.2 \mathrm{~cm}^{-1}$ and $E / D=0.29$. Anisotropic broadening of 50 GHz was included in the simulation in order to fit the experimental data (HStrain in the y direction coincident with the higher g value.)

Figure S6 In-phase $\chi_{\text {real }}$ and out-of-phase $\chi_{\text {imag }}$ molar susceptibilities for $\mathbf{3}$ at zero static magnetic field (left) and in non-zero static field (right). Lines serve as guides for the eyes.

Figure $\mathbf{S 7}$ Cyclic voltammogram of $\mathbf{C H}_{\mathbf{3}} \mathbf{N O}_{\mathbf{2}}$ recorded with a glassy carbon electrode at the rate $100 \mathrm{mV} / \mathrm{s}$ using 0.1 M tetrabutylammonium perchlorate as supporting electrolyte in $\mathrm{CH}_{3} \mathrm{CN}$ under argon atmosphere.

Figure S8 Cyclic voltammogram of \mathbf{L} recorded with a glassy carbon electrode at the rate $100 \mathrm{mV} / \mathrm{s}$ using 0.1 M tetrabutylammonium perchlorate as supporting electrolyte in $\mathrm{CH}_{3} \mathrm{CN}$ under argon atmosphere.

Figure
S9 Comparison of cyclic voltammograms of $\mathbf{1}$ (red) and $[\mathrm{Mn}(\mathbf{L 2})]\left(\mathrm{ClO}_{4}\right)_{2}$ (blue) recorded with a glassy carbon electrode at the rate $100 \mathrm{mV} / \mathrm{s}$ using 0.1 M tetrabutylammonium perchlorate as supporting electrolyte in $\mathrm{CH}_{3} \mathrm{CN}$ under argon atmosphere.

Figure S10 Comparison of cyclic voltammograms of 2 (red) and $[\mathrm{Fe}(\mathbf{L 2})]\left(\mathrm{ClO}_{4}\right)_{2}$ (blue) recorded with a glassy carbon electrode at the rate $100 \mathrm{mV} / \mathrm{s}$ using 0.1 M tetrabutylammonium perchlorate as supporting electrolyte in $\mathrm{CH}_{3} \mathrm{CN}$ under argon atmosphere.

Figure S11 Comparison of cyclic voltammograms of $\mathbf{3}$ (red) and $[\mathrm{Co}(\mathbf{L 2} 2)]\left(\mathrm{ClO}_{4}\right)_{2}$ (blue) recorded with a glassy carbon electrode at the rate $100 \mathrm{mV} / \mathrm{s}$ using 0.1 M tetrabutylammonium perchlorate as supporting electrolyte in $\mathrm{CH}_{3} \mathrm{CN}$ under argon atmosphere.

Table S1 Crystal data and structure refinements for studied complexes 1-4.

Compound	1	2	3	4
Formula	$\mathrm{C}_{61} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{Mn}_{2} \mathrm{~N}_{17} \mathrm{O}_{26} \mathrm{C}_{61} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{17} \mathrm{O}_{26} \mathrm{C}_{61} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{Co}_{2} \mathrm{~N}_{17} \mathrm{O}_{26} \mathrm{C}_{61} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{Ni}_{2} \mathrm{~N}_{17} \mathrm{O}_{26}$			
$M_{\text {r }}$	1714.06	1715.88	1722.04	1721.60
Temperature (K)	150(2)	150(2)	150(2)	150(2)
Wavelength (\AA)	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	triclinic	triclinic	triclinic
Space group	P-1	P-1	$\mathrm{P}-1$	P-1
$a(\AA)$	13.8753(4)	13.8335(4)	13.8322(4)	13.8336(4)
$b(\AA)$	14.9584(4)	14.9487(4)	14.9418(4)	14.9837(4)
$c(\AA)$	18.8648(6)	18.7892(5)	18.7191(5)	18.6193(5)
$\alpha\left({ }^{\circ}\right)$	77.3590(10)	77.1470(10)	77.1450(10)	76.9370(10)
$\beta\left({ }^{\circ}\right)$	76.2910(10)	76.1020(10)	76.4180(10)	76.3470(10)
$\gamma\left({ }^{\circ}\right)$	86.4830(10)	86.4130(10)	86.2140(10)	86.0280(10)
V, \AA^{3}	3711.50(19)	3677.05(18)	3665.99(18)	3652.76(18)
Z	2	2	2	2
$D_{\text {calc }}, \mathrm{g} \mathrm{cm}^{-3}$	1.534	1.550	1.560	1.565
μ, mm^{-1}	0.575	0.632	0.691	0.754
$F(000)$	1772	1776	1780	1784
θ range for data collection $\left({ }^{\circ}\right)$	1.669-25.000	1.143-25.000	1.607-25.000	1.153-27.570
Refl. collected	43364	49826	38740	61058
Independent refl.	13083	12969	12915	16876
$R(\mathrm{int})^{\mathrm{a}}$	0.0299	0.0191	0.0284	0.0282
Data/restrains/parameters	13083/24/992	12969/42/992	12915/ 24/992	16876/0/ 994
Completeness to θ (\%)	100.0	100.0	100.0	99.8
Goodness-of-fit on F^{2}	1.045	1.031	1.028	1.021
$R_{1}, \mathrm{w} R_{2}\left(I>2 \sigma(I){ }^{\text {b }}\right.$	0.0505, 0.1300	0.0535, 0.1487	0.0457, 0.1206	0.0491, 0.1278
$R_{1}, \mathrm{w} R_{2}$ (all data) ${ }^{\text {b }}$	0.0689, 0.1375	0.0590, 0.1521	0.0607, 0.1273	$0.0641,0.1371$
Largest diff. peak and hole / A^{-3}	1.125 and -1.008	1.120 and -1.196	1.034 and -0.892	1.473 and -1.012
CCDC number	1942109	1942110	1942111	1942112
${ }^{a} R_{\text {int }}=\Sigma\left\|F_{0}{ }^{2}-F_{\text {o,mean }}{ }^{2}\right\| / \Sigma F_{0}{ }^{2}$,	${ }^{2},{ }^{\text {b }} R_{1}=\Sigma\left(\| \| F_{0}\|-\| F_{0}\right.$	\| $\mid) / \Sigma\left\|F_{0}\right\| ; w R_{2}=$	$\left[\Sigma w\left(F_{0}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2} / \Sigma w\right.$	(Fo$\left.\left.{ }^{2}\right)^{2}\right]^{1 / 2}$

Table S2 Results of continuous shape measures calculations using program Shape 2.1 for compounds $\mathbf{1 - 4} .^{\text {a }}$

CN = 7							
\mathbf{b}	HP-7	HPY-7	PBPY-7	COC-7	CTPR-7	JPBPY-7	JETPY-7
$\mathbf{1}$	27.978	22.283	1.653	6.447	4.998	4.625	17.671
$\mathbf{2}$	28.056	22.370	1.482	6.675	5.225	4.202	18.219
$\mathbf{3}$	28.986	22.755	1.208	6.699	5.117	3.806	18.889
$\mathbf{4 a}^{\text {c }}$	29.553	22.661	1.201	6.818	5.114	3.296	20.061
$\mathbf{4 b}^{\text {c }}$	29.760	23.638	1.112	6.559	5.109	3.232	20.354

${ }^{a}$ the listed values correspond to the deviation between the ideal and real coordination polyhedra, the lowest values are in red color.
${ }^{\text {b }}$ HP-7 $=$ heptagon, HPY-7 = hexagonal pyramid, PBPY-7 = pentagonal bipyramid, COC-7 $=$ capped octahedron, CTPR-7 = capped trigonal prism.
${ }^{c}$ calculations were performed for two crystallographically independent molecules present in the asymmetric unit of 4 .

Table S3 Parameters of one-component Debye model for 3 .

T / K	$\chi_{\mathrm{S}} /\left(10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)$	$\chi_{\mathrm{T}} /\left(10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}\right)$	α	$\tau /(\mathrm{s})$
1.9	0.5465	9.3676	0.0360	$3.79 \mathrm{E}-04$
2.1	0.4772	8.5063	0.0429	$2.95 \mathrm{E}-04$
2.3	0.4723	7.8689	0.0385	$2.40 \mathrm{E}-04$
2.5	0.4225	7.2721	0.0410	$1.91 \mathrm{E}-04$
2.7	0.3045	6.7651	0.0418	$1.50 \mathrm{E}-04$
2.9	0.2364	6.3360	0.0438	$1.23 \mathrm{E}-04$
3.1	0.3043	5.9433	0.0284	$1.03 \mathrm{E}-04$
3.3	0.4118	5.6110	0.0349	$8.89 \mathrm{E}-05$
3.5	0.4167	5.3075	0.0350	$7.44 \mathrm{E}-05$
3.7	0.5233	5.0392	0.0077	$6.71 \mathrm{E}-05$
3.9	0.3856	4.7989	0.0092	$5.59 \mathrm{E}-05$
4.1	0.5628	4.5769	0.0140	$5.11 \mathrm{E}-05$
4.3	0.4393	4.3766	0.0068	$4.40 \mathrm{E}-05$
4.5	0.6701	4.1932	0.0063	$4.05 \mathrm{E}-05$
4.7	0.9442	4.0325	0.0069	$4.01 \mathrm{E}-05$
4.9	0.9838	3.8823	0.0072	$3.48 \mathrm{E}-05$

