Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

for

Stable Mixed-Valence Diphenylphosphanido Bridged Platinum(II)- Platinum(IV) Complexes

by

Consuelo Fortuño*, Antonio Martín, Mario Latronico, Stefano Todisco, Valentina Petrelli, Piero Mastrorilli*

CONTENT

Figure S1: ¹⁹F spectrum of 4

Figure S2: ¹⁹F EXSY spectrum of 4

Figure S3: ¹⁹F COSY spectrum of 4

Figure S4: ¹H spectrum of **4**

Figure S5: ¹H COSY spectrum of 4

Figure S6: ${}^{31}P{}^{1}H$ NMR spectrum of 4

Figure S7: ¹H NMR spectrum of 4

Figure S8: ¹H-³¹P HMQC spectrum of 4

Figure S9: ¹⁹F NMR spectrum of **2**

Figure S10: ³¹P{¹H} NMR spectrum of

Figure S11: ¹H NMR spectrum of **2**

Figure S12: ¹H-¹⁹⁵Pt HMQC and ¹⁹F-¹⁹⁵Pt HMQC spectra of 2

Figure S13: ¹H NOESY spectrum of **2**

Figure S14:¹H-³¹P HMQC spectrum of **2**

Figure S15: ¹⁹F NMR spectrum of **3**

Figure S16: ³¹P{¹H} NMR spectrum of **3**

Figure S17: ¹H NMR spectrum of **3**

Figure S18: ¹H-¹⁹⁵Pt HMQC and ¹⁹F-¹⁹⁵Pt HMQC spectra of **3**

Figure S19: ¹H NOESY spectrum of **3**

Figure S20: ¹H-³¹P HMQC spectrum of **3**

Figure S21: ¹⁹F NMR spectrum of **5**

Figure S22: ³¹P{¹H} NMR spectrum of **5**

Figure S23: ¹H NMR spectrum of **5**

Figure S24: ¹H-¹⁹⁵Pt HMQC and ¹⁹F-¹⁹⁵Pt HMQC spectra of **5**

Figure S25: ¹H NOESY spectrum of **5**

Figure S26:¹H-³¹P HMQC spectrum of **5**

Figure S27: ¹⁹F NMR spectrum of **6**

Figure S28: ³¹P{¹H} NMR spectrum of **6**

Figure S29: ¹H NMR spectrum of **6**

Figure S30: ¹H-¹⁹⁵Pt HMQC and ¹⁹F-¹⁹⁵Pt HMQC spectra of 6

Figure S31: ¹H NOESY spectrum of **6**

Figure S32: ¹H-³¹P HMQC spectrum of 6

Figure S33: ¹⁹F NMR spectrum of **7**

Figure S34: ³¹P{¹H} NMR spectrum of 7

Figure S35: ¹H NMR spectrum of 7

Figure S36: ¹H-¹⁹⁵Pt HMQC and ¹⁹F-¹⁹⁵Pt HMQC spectra of 7

Figure S37: ¹H NOESY spectrum of **7**

Figure S38: ¹H-³¹P HMQC spectrum of 7

Figure S39: ¹⁹F NMR spectrum of 8

Figure S40: ³¹P{¹H} NMR spectrum of 8

Figure S41: ¹H NMR spectrum of 8

Figure S42: ¹H-¹⁹⁵Pt HMQC and ¹⁹F-¹⁹⁵Pt HMQC spectra of 8

Figure S43: ¹H NOESY spectrum of 8

Figure S44: ¹H-³¹P HMQC spectrum of 8

Figure S45: ¹⁹F NMR spectrum of **10**

Figure S46: ³¹P{¹H} NMR spectrum of **10**

Figure S47: ¹H NMR spectrum of **10**

Figure S48: ¹H-¹⁹⁵Pt HMQC and ¹⁹F-¹⁹⁵Pt HMQC spectra of **10**

Figure S49: Low-field portion of the ¹H NOESY spectrum of **10**

Figure S50: Portion of the ¹H-³¹P HMQC spectrum of **10**

Figure S51: ¹⁹F NMR spectrum of **11**

Figure S52: ³¹P{¹H} NMR spectrum of **11**

Figure S53: ¹H NMR spectrum of **11**

Figure S54: ¹H-¹⁹⁵Pt HMQC and ¹⁹F-¹⁹⁵Pt HMQC spectra of **11**

Figure S55: ¹H COSY spectrum of 11

Figure S56: ¹H-³¹P HMQC spectrum of **11**

Figure S57: ¹⁹F NMR spectrum of *cis*-12

Figure S58: ³¹P{¹H} NMR spectrum of *cis*-12

Figure S59: ¹H NMR spectrum of *cis*-12

Figure S60: ¹H NOESY spectrum of *cis*-12

Figure S1: ¹⁹F spectrum of **4** (C₃D₆O, 376 MHz, 298 K).

Figure S2: ¹⁹F EXSY spectrum of **4** (C₃D₆O, 376 MHz, 298 K).

Figure S3: Portion of the 19 F COSY spectrum of 4 (C₃D₆O, 376 MHz, 198 K).

Figure S4: ¹H spectrum of **4** (C₃D₆O, 400 MHz, 298 K).

Figure S5: Portion of the ¹H COSY spectrum of 4 (C₃D₆O, 400 MHz, 298 K).

Figure S6: ${}^{31}P{}^{1}H$ NMR spectrum of 4 (C₃D₆O, 162 MHz, 298 K).

Figure S7: ¹H NMR spectrum of 4 (348 K, 400 MHz, C₂D₂Cl₄).

Figure S8: Low-field portion of the ${}^{1}H-{}^{31}P$ HMQC spectrum of 4 (C₂D₂Cl₄, 348 K).

Figure S9: ¹⁹F NMR spectrum of **2** (C₃D₆O, 376 MHz, 298 K)

Figure S10: ${}^{31}P{}^{1}H$ NMR spectrum of **2** (C₃D₆O, 162 MHz, 298 K)

Figure S12 *a*: ¹H-¹⁹⁵Pt HMQC and *b*) ¹⁹F-¹⁹⁵Pt HMQC spectra of **2** (C₃D₆O, 298 K).

Figure S13. Low-field portion of the ¹H NOESY spectrum of **2** (C₃D₆O, 400 MHz, 298 K).

Figure S14. Portion of the $^{1}H^{-31}P$ HMQC spectrum of **2** (C₃D₆O, 298 K).

Figure S15: ¹⁹F NMR spectrum of **3** (C₃D₆O, 376 MHz, 298 K)

Figure S16: ³¹P{¹H} NMR spectrum of **3** (C₃D₆O, 162 MHz, 298 K)

Figure S17: ¹H NMR spectrum of **3** (C₃D₆O, 400 MHz, 298 K)

Figure S18 a: ${}^{1}\text{H}{}^{-195}\text{Pt}$ HMQC and b) ${}^{19}\text{F}{}^{-195}\text{Pt}$ HMQC spectra of **3** (C₃D₆O, 298 K).

Figure S19: Low-field portion of the ¹H NOESY spectrum of **3** (C₃D₆O, 400 MHz, 298 K).

Figure S20: Portion of the ¹H-³¹P HMQC spectrum of **3** (C₃D₆O, 298 K).

Figure S21: ¹⁹F NMR spectrum of **5** (C₃D₆O, 376 MHz, 298 K)

Figure S22: ³¹P{¹H} NMR spectrum of **5** (C₃D₆O, 162 MHz, 298 K)

Figure S23: ¹H NMR spectrum of **5** (C₃D₆O, 400 MHz, 298 K)

Figure S24 a: ${}^{1}H{}^{-195}Pt$ HMQC and b) ${}^{19}F{}^{-195}Pt$ HMQC spectra of **5** (C₃D₆O, 298 K).

Figure S25: Low-field portion of the ¹H NOESY spectrum of 5 (C₃D₆O, 400 MHz, 298 K)

Figure S26: Portion of the $^{1}H^{-31}P$ HMQC spectrum of **5** (C₃D₆O, 298 K).

Figure S27: ¹⁹F NMR spectrum of **6** (C₃D₆O, 376 MHz, 298 K)

Figure S28: ³¹P{¹H} NMR spectrum of **6** (C₃D₆O, 162 MHz, 298 K)

Figure S29: ¹H NMR spectrum of **6** (C₃D₆O, 400 MHz, 298 K)

Figure S30 a: ${}^{1}H{}^{-195}Pt$ HMQC and b) ${}^{19}F{}^{-195}Pt$ HMQC spectra of **6** (C₃D₆O, 298 K).

Figure S31: Low-field portion of the ¹H NOESY spectrum of **6** (C₃D₆O, 400 MHz, 298 K).

Figure S32: Portion of the ¹H-³¹P HMQC spectrum of **6** (C₃D₆O, 298 K).

Figure S34: ³¹P{¹H} NMR spectrum of **7** (C₃D₆O, 162 MHz, 298 K)

Figure S35: ¹H NMR spectrum of **7** (C₃D₆O, 400 MHz, 298 K)

Figure S36 a: $^{1}H^{-195}Pt$ HMQC and b) $^{19}F^{-195}Pt$ HMQC spectra of 7 (C₃D₆O, 298 K).

Figure S37: Low-field portion of the ¹H NOESY spectrum of 7 (C₃D₆O, 400 MHz, 298 K).

Figure S38. Portion of the ¹H-³¹P HMQC spectrum of 7 (C₃D₆O, 298 K).

Figure S39: ¹⁹F NMR spectrum of **8** (C₃D₆O, 376 MHz, 298 K)

Figure S40: ³¹P{¹H} NMR spectrum of **8** (C₃D₆O, 162 MHz, 298 K)

Figure S41: ¹H NMR spectrum of **8** (C₃D₆O, 400 MHz, 298 K).

Figure S42 a: ${}^{1}\text{H}{}^{-195}\text{Pt}$ HMQC and b) ${}^{19}\text{F}{}^{-195}\text{Pt}$ HMQC spectra of **8** (C₃D₆O, 298 K).

Figure S43: Low-field portion of the ¹H NOESY spectrum of **8** (C₃D₆O, 400 MHz, 298 K).

Figure S44: Portion of the $^{1}H^{-31}P$ HMQC spectrum of 8 (C₃D₆O, 298 K).

Figure S45: ¹⁹F NMR spectrum of **10** (C₃D₆O, 376 MHz, 298 K)

Figure S46: ³¹P{¹H} NMR spectrum of **10** (C₃D₆O, 162 MHz, 298 K)

Figure S47: ¹H NMR spectrum of **10** (C₃D₆O, 400 MHz, 298 K)

Figure S48 a: ${}^{1}\text{H}{}^{-195}\text{Pt}$ HMQC and b) ${}^{19}\text{F}{}^{-195}\text{Pt}$ HMQC spectra of **10** (C₃D₆O, 298 K).

Figure S49: Low-field portion of the ¹H NOESY spectrum of **10** (C₃D₆O, 400 MHz, 298 K).

Figure S50: Portion of the ¹H-³¹P HMQC spectrum of **10** (C₃D₆O, 298 K).

Figure S51: ¹⁹F NMR spectrum of **11** (C₃D₆O, 376 MHz, 298 K)

Figure S52: ³¹P{¹H} NMR spectrum of **11** (C₃D₆O, 162 MHz, 298 K)

Figure S53: ¹H NMR spectrum of **11** (C₃D₆O, 400 MHz, 298 K). Asterisked peaks belong to free NBu₄PhS.

Figure S54 a: ${}^{1}H{}^{-195}Pt$ HMQC and b) ${}^{19}F{}^{-195}Pt$ HMQC spectra of **11** (C₃D₆O, 298 K).

Figure S55: Low-field portion of the ¹H COSY spectrum of **11** (C₃D₆O, 400 MHz, 298 K).

Figure S56: Portion of the $^{1}H^{-31}P$ HMQC spectrum of **11** (C₃D₆O, 298 K).

Figure S57: ¹⁹F NMR spectrum of *cis*-**12** (C₃D₆O, 376 MHz, 298 K)

Figure S58: ³¹P{¹H} NMR spectrum of *cis*-12 (C₃D₆O, 162 MHz, 298 K)

Figure S59: Lowfield part of the ¹H NMR spectrum of *cis*-12 (C₃D₆O, 400 MHz, 298 K).

Figure S60: Low-field portion of the ¹H NOESY spectrum of *cis*-12 (C₃D₆O, 400 MHz, 298 K).