Supporting Information

Alkali-metal Organomagnesiate Complexes as Catalysts for Highly Chemselective Crossed-Tishchenko Reaction

Zhiqiang Guo,*a Tengfei Pang,^b Yakong Wang,^b Yongbin Zhang,^c Xuehong Wei*a,^c

^aScientific Instrument Center, Shanxi University, Taiyuan, 030006, P.R. China

^bSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P.R. China

^cInstitute of Applied Chemistry, Shanxi University, Taiyuan 030006, P. R China.

*Corresponding author: Email: gzq@sxu.edu.cn, xhwei@sxu.edu.cn

Contents

Experimental Procedures	S2
The Procedure for Crossed-Tishchenko Reaction Catalyzed by Complex (1-5)	S2
The Control Reactions	S6
Crystal Data and Structure Refinement Details of (1), (3) and (4)	S7
ORTEP Diagram of Compound 2a and 2e	S8
Crystal Data and Structure Refinement Details of 2a and 2e	S9
¹ H and ¹³ C NMR Spectra of Alkali-metal Organomagnesiate Complexes	S10
Characterization Data of the Ester Compounds	S15
References	.S18
¹ H and ¹³ C NMR Spectra of the ester compounds	. S19

Experimental Procedures

1. The Procedure for Crossed-Tishchenko Reaction Catalyzed by Complex 1-5

(a) In a glovebox, to a 50 mL sealed tube with a magnetic stirring bar, was successively added benzaldehyde (102 uL, 1.0 mmol), *o*-bromobenzaldehyde (117 uL, 1.0 mmol) catalyst **1** (0.0312 g, 0.05 mmol). The mixture was stirred at 30 °C for 3 h. The reaction was then quenched with H₂O (10 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. The yields were determined by ¹H NMR spectroscopy with trichloroethylene (90 μ L, 1 mmol) as an internal standard. The NMR yield of 2-bromobenzyl benzoate is 37%.

(b) In a glovebox, to a 50 mL sealed tube with a magnetic stirring bar, was successively added benzaldehyde (102 uL, 1.0 mmol), *o*-bromobenzaldehyde (117 uL, 1.0 mmol) catalyst **2** (0.0282 g, 0.05 mmol). The mixture was stirred at 30 °C for 3 h. The reaction was then quenched with H₂O (10 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. The yields were determined by ¹H NMR spectroscopy with trichloroethylene (90 μ L, 1 mmol) as an internal standard. The NMR yield of 2-bromobenzyl benzoate is 41%.

(c) In a glovebox, to a 50 mL sealed tube with a magnetic stirring bar, was successively added benzaldehyde (102 uL, 1.0 mmol), *o*-bromobenzaldehyde (117 uL, 1.0 mmol) catalyst **3** (0.0329 g, 0.05 mmol). The mixture was stirred at 30 °C for 3 h. The reaction was then quenched with H₂O (10 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. The yields were determined by ¹H NMR spectroscopy with trichloroethylene (90 μ L, 1 mmol) as an internal standard. The NMR yield of 2-bromobenzyl benzoate is 57%.

(d) In a glovebox, to a 50 mL sealed tube with a magnetic stirring bar, was successively added benzaldehyde (102 uL, 1.0 mmol), *o*-bromobenzaldehyde (117 uL, 1.0 mmol) catalyst 4 (0.0371 g, 0.05 mmol). The mixture was stirred at 30 °C for 3 h. The reaction was then quenched with H₂O (10 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. The yields were determined by ¹H NMR spectroscopy with trichloroethylene (90 μ L, 1 mmol) as an internal standard. The NMR yield of 2-bromobenzyl benzoate is 54%.

(e) In a glovebox, to a 50 mL sealed tube with a magnetic stirring bar, was successively added benzaldehyde (102 uL, 1.0 mmol), *o*-bromobenzaldehyde (117 uL, 1.0 mmol) catalyst **5** (0.0344 g, 0.05 mmol). The mixture was stirred at 30 °C for 3 h. The reaction was then quenched with H₂O (10 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried over Na₂SO₄ and concentrated. The yields were determined by ¹H NMR spectroscopy with trichloroethylene (90 μ L, 1 mmol) as an internal standard. The NMR yield of 2-bromobenzyl benzoate is 50%.

2. The Control Reactions.

In the same condition, the control reactions were carried out using 2-aminopyrr olyl lithium complex {[2-(CH₂NHCMe₃)C₄H₃N]Li(THF)}₂, 2-aminopyrrolyl dilithium compounds { μ - η^5 : η^1 -2-(Me₃CNCH₂)C₄H₃N]Li₂(TMEDA)}₂ and sodium alkyl magnesiate {ⁿBuMg[2-(Me₃CNCH₂)C₄H₃N]Na(Et₂O)}_∞ (**3**) with the same supporting ligand as catalysts. As shown in the following scheme, the NMR results show that mono-, di-lithioaminopyrroyl complex can catalyze Tishchenko reaction, but their selectivity is lower than that of sodium alkyl magnesiate.

--5.46 --5.45 --5.38 --5.37

Crystal data and Structure Refinement Details of 1, 3 and 4

Complex	1	3	4
Empirical formula	C ₃₄ H ₆₀ Li ₂ MgN ₄ O ₄	$\overline{C_{34}H_{66}Mg_2N_4Na_2O_2}$	C ₃₈ H ₇₇ Mg ₂ N ₈ Na ₂
Formula weight	627.05	655.49	740.68
Temperature (K)	200(2)	136(2)	150(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Orthorhombic	Monoclinic
space group	C2/c	Pbca	P2(1)/c
a (Å)	22.586(2)	17.2336(6)	18.5707(7)
b (Å)	11.7778(12)	19.0795(6)	17.2230(6)
c (Å)	17.703(3)	24.5532(8)	15.7369(6)
α (deg)	90.00	90.00	90.00
β (deg)	126.618(2)	90.00	112.5610(10)
γ (deg)	90.00	90.00	90.00
Volume (Å ³)	3779.8(8)	8073.3(5)	4648.1(3)
Ζ	4	8	4
$D_{c} (g/cm^{-3})$	1.102	1.079	1.058
M (mm ⁻¹)	0.085	0.113	0.104
F(000)	1368	2864	1628
Crystal size (mm)	0.45 x 0.40 x 0.40	0.30 x 0.30 x 0.20	0.30 x 0.30 x 0.20
Theta range for data collection	3.27 to 28.81 deg.	2.89 to 28.28 deg.	2.85 to 27.34 deg.
Reflections collected	27282 / 3320	57967 / 7125	34123 / 8183 [R(int)
/ unique	[R(int) = 0.0801]	[R(int) = 0.0315]	= 0.0341]
Completeness to theta = 25.05	98.8 %	99.7 %	99.5 %
Max. and min. transmission	0.967 and 0.963	0.9778 and 0.9670	0.9796 and 0.9696
Data / restraints / parameters	3320/ 1 / 207	7125/ 541 / 434	8183 / 43/ 476
Goodness-of-fit	0.989	1.062	1.048
R ₁ / wR ₂ [I>2sigma(I)]	0.0795 / 0.1336	0.0703/ 0.2013	0.0761/ 0.2040
R_1 / wR_2 (all data)	0.1635/ 0.1826	0.0808 / 0.2183	0.1000 / 0.2287

Table S1. Single crystal X-ray data and structure refinement details for 1, 3, 4.

ORTEP Diagram of Compound 2a and 2e

Figure S1. ORTEP diagram of compound **2a** with thermal ellipsoids at 30% probability (H not shown for clarity)

Figure S2. ORTEP diagram of compound **2e** with thermal ellipsoids at 30% probability (H not shown for clarity)

Crystal Data and Structure Refinement Details of 2a and 2e

Complex	2a	2e
Empirical formula	$C_{14}H_{11}BrO_2$	C ₁₄ H ₁₀ BrNO ₄
Formula weight	291.14	336.14
Temperature (K)	296(2)	298(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	Triclinic	Triclinic
space group	P-1	P-1
a (Å)	8.2096(12)	7.1524(7)
b (Å)	8.2608(12)	9.2277(10)
c (Å)	9.3910(13)	10.9410(11)
a (deg)	76.231(6)	76.639(4)
β (deg)	81.102(5)	70.963(4)
γ (deg)	84.399(5)	77.997(3)
Volume (Å ³)	609.90(15)	657.20(12)
Ζ	2	2
$D_{c} (g/cm^{-3})$	1.585	1.699
M (mm ⁻¹)	3.356	3.140
F(000)	292	336
Crystal size (mm)	0.31 x 0.30 x 0.25	0.30 x 0.20 x 0.20
Theta range for data collection	2.99 to 28.29 deg.	3.12 to 34.75 deg.
Reflections collected /	9515 / 2107	13798 / 2298
unique	[R(int) = 0.0501]	[R(int) = 0.0277]
Completeness to theta = 25.05	98.5 %	98.8 %
Max. and min. transmission	0.488 and 0.423	0.572 and 0.453
Data / restraints / parameters	2107 / 0 / 155	2293 / 0 / 182
Goodness-of-fit	1.129	1.06
$R_1 / wR_2 [I > 2 sigma(I)]$	0.0448 / 0.0859	0.0248 / 0.0816
R_1 / wR_2 (all data)	0.0567 / 0.0899	0.0269 / 0.0851

Table S2. Single crystal X-ray data and structure refinement details for **2a** and **2e**

¹H and ¹³C NMR Spectra of Alkali-metal Organomagnesiate Complexes

¹H NMR and ¹³C NMR spectrum of complex (1) in d_8 -THF

 ^1H NMR and ^{13}C NMR spectrum of complex (2) in d_8-THF

¹H NMR and ¹³C NMR spectrum of complex (3) in d_8 -THF

 1 H NMR and 13 C NMR spectrum of complex (4) in d₈-THF

¹H NMR and ¹³C NMR spectrum of complex (5) in d_8 -THF

Characterization Data of the Ester Compounds

(The ester compounds were identified through comparisons with the corresponding ¹H NMR, ¹³C NMR data reported in the literatures.)

2-bromobenzyl benzoate¹

White solid, yield: 58%. ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 7.5 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.51 (d, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 7.7 Hz, 1H), 5.46 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 166.33 (s), 135.55 (s), 133.30 (s), 133.06 (s), 129.98 (dd, *J* = 22.7, 4.8 Hz), 128.58 (s), 127.67 (s), 123.65 (s), 66.37 (s).

2-bromobenzyl-4-methylbenzoate

Colourless liquid, yield: 54%. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.0 Hz, 1H), 7.49 (d, J = 7.7 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.24 (d, J = 7.9 Hz, 2H), 7.19 (t, J = 7.7 Hz, 1H), 5.42 (s, 2H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.36 (s), 143.99 (s), 135.67 (s), 132.99 (s), 130.02-129.68 (m), 129.27 (s), 127.63 (s), 127.30 (s), 123.54 (s), 66.15 (s), 21.78 (s).

2-bromobenzyl-4-nitrobenzoate

Yellow solid, yield: 65%. ¹H NMR (600 MHz, CDCl₃) δ 8.27 (dd, J = 22.9, 9.0 Hz, 4H), 7.63 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.36 (t, J = 7.5 Hz, 1H), 7.27-7.23 (m, 1H), 5.49 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 164.47 (s), 150.77 (s), 135.43 (s), 134.73 (s), 133.25 (s), 131.03 (s), 130.58 (s), 130.39 (s), 127.79 (s), 124.05 (s), 123.74 (s), 67.33 (s).

2-bromobenzyl-4-chlorobenzoate²

Colourless liquid, yield: 69%. ¹H NMR (600 MHz, CDCl₃) δ 8.03 (d, J = 8.6 Hz, 2H), 7.61 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 7.6 Hz, 1H), 7.42 (d, J = 8.6 Hz, 2H), 7.34 (t, J = 7.5 Hz, 1H), 7.22 (t, J = 7.7 Hz, 1H), 5.44 (s, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 165.49 (s), 139.78 (s), 135.27 (s), 133.12 (s), 131.30 (s), 130.21 (s), 130.05 (s), 128.94 (s), 128.50 (s), 127.71 (s), 123.79 (s), 66.63 (s).

2-bromobenzyl-4-methoxybenzoate

Colourless liquid, yield: 48%. ¹H NMR (600 MHz, CDCl₃) δ 8.05 (d, *J* = 8.9 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 8.9 Hz, 2H), 5.41 (s, 2H), 3.86 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.04 (s), 163.66 (s), 135.77 (s), 132.99 (s), 131.94 (s), 129.91 (s), 129.75 (s), 127.63 (s), 123.54 (s), 122.44 (s), 113.81 (s), 66.05 (s), 55.57 (s).

2-Methoxybenzyl benzoate²

Colourless liquid, yield: 72%. ¹H NMR (600 MHz, CDCl₃) δ 8.08 (dd, J = 8.4, 1.3 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.44-7.40 (m, 3H), 7.31 (t, J = 7.9 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 8.2 Hz, 1H), 5.42 (s, 2H), 3.84 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.64 (s), 157.61 (s), 132.97 (s), 130.51 (s), 129.80 (s), 129.54 (d, J = 11.0 Hz), 128.42 (s), 124.46 (s), 120.53 (s), 110.56 (s), 62.28 (s), 55.53 (s).

2-Methoxybenzyl-4-methylbenzoate³

Colourless liquid, yield: 75%. ¹H NMR (600 MHz, CDCl₃) δ 7.97 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 7.5 Hz, 1H), 7.30 (t, J = 7.9 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 6.96 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 8.2 Hz, 1H), 5.40 (s, 2H), 3.83 (s, 3H), 2.39 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.65 (s), 157.52 (s), 143.57 (s), 129.79 (s), 129.40 (d, J= 14.3 Hz), 129.10 (s), 127.73 (s), 124.64 (s), 120.48 (s), 110.49 (s), 62.03 (s), 55.46 (s), 21.70 (s).

2-methoxybenzyl-4-chlorobenzoate²

White solid, yield: 79%. ¹H NMR (600 MHz, CDCl₃) δ 8.03-7.99 (m, 2H), 7.42-7.38 (m, 3H), 7.33 (td, J = 8.1, 1.7 Hz, 1H), 6.97 (t, J = 7.1 Hz, 1H), 6.92 (d, J = 8.2 Hz, 1H), 5.41 (s, 2H), 3.86 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 165.85 (s), 157.74 (s), 139.45 (s), 131.25 (s), 129.78 (d, J = 9.6 Hz), 129.01 (s), 128.81 (s), 124.28 (s), 120.59 (s), 110.65 (s), 62.61 (s), 55.60 (s).

2-Methoxybenzyl-4-nitrobenzoate³

White solid, yield: 66%. ¹H NMR (600 MHz, CDCl₃) δ 8.25 (d, J = 15.4 Hz, 4H), 7.45-7.31 (m, 2H), 7.02-6.89 (m, 2H), 5.46 (s, 2H), 3.87 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 164.79 (s), 157.86 (s), 150.61 (s), 135.95 (s), 130.94 (s), 130.14 (d, J = 12.1 Hz), 123.64 (d, J = 7.4 Hz), 120.61 (s), 110.72 (s), 63.35 (s), 55.60 (s).

2-methoxybenzyl 4-chlorobenzoate²

White solid, yield: 65%. ¹H NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 9.0 Hz, 2H), 7.41 (d, *J* = 7.5 Hz, 1H), 7.32-7.28 (m, 1H), 6.96 (t, *J* = 7.5 Hz, 1H), 6.91 (t, *J* = 5.9 Hz, 3H), 5.39 (s, 2H), 3.84 (d, *J* = 3.6 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 166.39 (s),

163.42 (s), 157.55 (s), 131.82 (s), 129.41 (d, J = 10.4 Hz), 124.76 (s), 122.94 (s), 120.52 (s), 113.66 (s), 110.53 (s), 61.96 (s), 55.53 (d, J = 4.7 Hz).

References

¹H and ¹³C NMR Spectra of the Ester Compounds

S46

