Supporting Information

A stable and highly selective metalloporphyrin based framework for catalytic oxidation of cyclohexene

Zhinan Xia,^a Fengyan Li,^{*a,b} Lin Xu^a and Pingyun Feng^{*b}

^aKey Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China. E-mail: lify525@nenu.edu.cn

^bDepartment of Chemistry, University of California, Riverside, California 92521, USA. E-mail: pingyun.feng@ucr.edu

Characterization techniques

IR spectra were collected from KBr pellets on an Agilent Technologies Cary 630 FTIR spectrophotometer. Thermogravimetric analyses (TGA) were performed on a PerkinElmer TGA instrument heating from room temperature to 800°C in N₂ atmosphere at the rate of 10°C min⁻¹. GC spectra were recorded on a Agilent Technologies 7820A. Powder X-ray diffraction (XRD) pattern for sample was recorded ranging from 5° to 40° at room temperature on a Siemens D5005 diffractometer with Cu-Ka (λ = 1.5418 Å) radiation. X-ray photoelectron spectroscopy (XPS) was carried out on a USWHA150 photoelectron spectrometer using monochromatic Al K α radiation as the excitation source. Morphology analyses was characterized by adopting a scanning electron microscope (Hitachi SU-8000 FE-SEM) equipped with an energy-dispersive X-ray (EDX) analyzer.

Fig. S1 TGA plots of the Mo₂TCPP.

Fig. S2 The X-ray diffraction pattern of the catalyst Mo₂TCPP after several cycles

Fig. S3 The catalyst turnovers in 8 hours.

Fig. S4 XPS analysis of Mo_2TCPP . (a) survey scan; (b) C 1s; (c) Mo 3d. the binding energies of C, N and O are 285eV, 398eV and 531eV, respectively, and the valence of the three elements are in common state. In Fig. 8c, the two strong peaks at 232.45eV and 235.8eV belong to Mo3d binding energies, so the valence state of Mo element is Mo^{6+} .

Fig. S5 FTIR spectra of H_4TCPP (a) and Mo_2TCPP (b). The peaks at 865 and 590 cm⁻¹ are attributed to Mo-O vibration peaks in Mo_2TCPP . Because the coordination of metals to the ligands, the peak value in the spectrum shifts slightly compared to the TCPP ligands.

Fig. S6 H_2O_2 as oxidant, the selectivity of epoxycyclohexane after catalytic oxidation by TCPP (purple) and Mo₂TCPP (orange) at different time.

Fig. S7 H_2O_2 as oxidant, the productivity of epoxycyclohexane by Mo_2TCPP with cyclohexene at different runs.

Fig. S8 CHP as oxidant, the productivity of epoxycyclohexane by Mo_2TCPP with cyclohexene at different runs.

Compounds	Mo ₂ TCPP		
Empirical formula	$C_{54}H_{59}Mo_2N_7O_{19}$		
Formula weight	1325.77		
Crystal system	Orthorhombic		
Space group	Pnma		
<i>a</i> (Å)	24.2727(9)		
b (Å)	35.9510(13)		
<i>c</i> (Å)	7.6427(3)		
Volume (Å ³)	6669.2(4)		
Ζ	4		
ρ (g·cm ⁻³)	1.320		
F(000)	2360		
μ (mm ⁻¹)	0.433		
R _{all}	0.0867		
Data / parameters	2664/321		
Goodness-of-fit on F ²	1.014		
$R_1 (\mathbf{w}R_2) [\mathbf{I} > 2\sigma(\mathbf{I})]$	0.0778		
R_1 (w R_2) (all data)	0.1952		

Table S1 Crystal data and structure refinements.

Catalyst	Cyclooctane	Cyclooctanone	Cyclooctane-1,4-dione	Cyclooctanol	Cyclooctane
	conversion (%)	yield (%)	yield (%)	yield(%)	selectivity (%)
None	0	-	-	-	-
Na ₂ MoC	$D_4 = 0$	-	-	-	-
H ₄ TCPP	0	-	-	-	-
Mo ₂ TCF	PP 68.6	46	14.4	8.2	67
					~~~

**Table S2** Catalytic performence of different catalysts in the oxidation of cyclooctane with  $H_2O_2^a$ .

^{*a*} Reaction conditions: 3 ml cyclooctane, 4ml H₂O₂, 80°C, 8 h and Mo₂TCPP 0.02 g.

**Table S3** Catalytic performance of different catalysts in the oxidation of benzene with  $H_2O_2^{b}$ .

11202.				
Catalyst	Benzene	Phenol	Quinones	Phenol
	conversion(%)	yield(%)	yield(%))	selectivity(%)
None	0	-	-	-
Na ₂ MoO ₄	0	-	-	-
H ₄ TCPP	0	-	-	-
Mo ₂ TCPP	71	47.9	23.1	67.5

^b Reaction conditions: 8mmol benzene, 3ml H₂O₂, 80°C, 8 h and Mo₂TCPP 0.02 g.