## **Supporting Information**

# Novel Phosphine Sulphide Gold(I) Complexes: Topoisomerase I Inhibitors and Antiproliferative Agents.

Endika Martín-Encinas,<sup>a, d</sup> Verónica Conejo-Rodríguez,<sup>b, d</sup> Jesús A. Miguel,<sup>b</sup> Jesús M. Martínez-Ilarduya,<sup>b</sup> Gloria Rubiales,<sup>a</sup> Birgitta R. Knudsen,<sup>c</sup> Francisco Palacios<sup>a</sup> and Concepción Alonso<sup>a,\*</sup>

<sup>a</sup> Department of Organic Chemistry I, Faculty of Pharmacy,

University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain

<sup>b</sup> IU CINQUIMA/Química Inorgánica, Faculty of Science

University of Valladolid, 47071 Valladolid, Spain

<sup>c</sup> Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center (iNANO)

University of Aarhus, 8000 Aarhus, Denmark

<sup>d</sup> These authors contributed equally

| Page   | Figures, NMR spectra and Tables                                                                          |
|--------|----------------------------------------------------------------------------------------------------------|
| S2     | Table S1. TopI inhibitory activity of compounds 1-8 and CPT                                              |
| \$3    | Table S2. Calculated energies and molecular properties computed at B3LYP/6-311G**                        |
| 55     | basis set level of theory for compounds <b>3</b> , <b>4</b> , <b>7</b> and <b>8</b> , CPT and auranofin. |
|        | Figure S1. MEP surfaces mapped from total electron density for compounds 3 and 4.                        |
|        | Electrostatic potentials are displayed on a 0.002 a.u. isodensity surface. The limits of                 |
|        | electrostatic potentials for each molecule are under surfaces. Potential increases in the                |
|        | following order: red (most negative)/orange/yellow/green/blue (most positive).                           |
| S4     | Figure S2. MEP surfaces mapped from total electron density for Auranofin and                             |
|        | compounds having the Au-perfluorophenyl ligand 7 and 8. Electrostatic potentials are                     |
|        | displayed on a 0.002 a.u. isodensity surface. The limits of electrostatic potentials for each            |
|        | molecule are under surfaces. Potential increases in the following order: red (most                       |
|        | negative)/orange/yellow/green/blue (most positive).                                                      |
| S5-S15 | NMR spectra of the gold(I) complexes $[Au(C_6F_5)(SPPh_2R)]$                                             |
| S16    | Table S3. Crystal data and structure refinements for complexes 5, 6 and 8                                |
|        | Figure S3. Partial view of crystal packing of 5. Centroids of C6F5 rings are shown as red                |
| S17    | circles and Centroidcentroid distance is 3.754 Å. Color code: C, dark gray; P, orange;                   |
|        | Au, S, yellow; F, green and H, gray.                                                                     |
|        | Figure S4. Partial view of crystal packing of 6. Centroids of C6F5 rings are shown as red                |
|        | circles and centroidcentroid distance is 3.554 Å. Color code: C, dark gray; P, orange;                   |
|        | Au, S, yellow; F, green; N blue and H, gray.                                                             |
|        | Figure S5. Partial view of crystal packing of 8. Centroids of C6F5 rings are shown as red                |
|        | circles and centroidcentroid distance is 3.790 Å. Color code: C, dark gray; P, orange;                   |
|        | Au, S, yellow; F, green and H, gray.                                                                     |

| Entry | Cmpd | R <sup>1</sup> | R <sup>2</sup> | % inhibition |     |     |
|-------|------|----------------|----------------|--------------|-----|-----|
|       |      |                |                | 15"          | 1'  | 3'  |
| 1     |      | СРТ            |                | ++           | ++  | Θ   |
| 2     | 1    | -              | -              | Θ            | Θ   | Θ   |
| 3     | 2    | -              | -              | Θ            | Θ   | Θ   |
| 4     | 3a   | 2-naphthyl     | н              | +++          | +++ | +++ |
| 5     | 3b   | $4-CF_3C_6H_4$ | F              | +++          | +++ | +++ |
| 6     | 4    | 2-naphthyl     | н              | Θ            | Θ   | Θ   |
| 7     | 5    | -              | -              | Θ            | Θ   | Θ   |
| 8     | 6    | -              | -              | Θ            | Θ   | Θ   |
| 9     | 7a   | 2-naphthyl     | н              | +++          | +++ | +++ |
| 10    | 7b   | $4-CF_3C_6H_4$ | F              | +++          | +++ | +++ |
| 11    | 8    | 2-naphthyl     | Н              | +++          | +++ | +++ |

Table S1. Topl inhibitory activity of compounds 1-8 and CPT.<sup>[a]</sup>

<sup>*a*</sup> The activity of the compounds to inhibit TopI relaxation was expressed semiquantitatively as follows: Θ, no activity; ++ similar activity to camptothecin; +++ strong activity.

| Entry | Cmpd.      | ∆G (g)<br>(in a.u.) | $\Delta$ G (aq)<br>(in a.u.) | Е <sub>номо</sub> (eV) | E <sub>LUMO</sub> (eV) | Gap<br>(-eV) | η<br>(in a.u.) | μ<br>(in a.u.) | ω<br>(eV) | ∆Nmax<br>(in a.u.) | Dipole<br>moment<br>(debye) | Polarizability<br>(in a.u.) |
|-------|------------|---------------------|------------------------------|------------------------|------------------------|--------------|----------------|----------------|-----------|--------------------|-----------------------------|-----------------------------|
| 1     | 3a         | -2222.26            | -2222.28                     | -0.20443               | -0.04402               | 4.37         | 0.16041        | -0.12422       | 0.048101  | 0.77442            | 4.129                       | 459.406                     |
| 2     | <b>3</b> b | -2505.04            | -2505.06                     | -0.21266               | -0.04843               | 4.47         | 0.16423        | -0.13055       | 0.051885  | 0.79489            | 5.067                       | 420.088                     |
| 3     | 4          | -2219.89            | -2219.91                     | -0.20865               | -0.07914               | 3.52         | 0.12951        | -0.14389       | 0.079939  | 1.11107            | 5.632                       | 485.264                     |
| 4     | 7a         | -3085.73            | -3085.75                     | -0.22185               | -0.06145               | 4.36         | 0.16040        | -0.14165       | 0.062546  | 0.88310            | 12.227                      | 570.122                     |
| 5     | 7b         | -3368.51            | -3368.53                     | -0.23032               | -0.06665               | 4.45         | 0.16367        | -0.14848       | 0.067354  | 0.90722            | 12.173                      | 527.748                     |
| 6     | 8          | -3083.37            | -3083.39                     | -0.22258               | -0.09552               | 3.46         | 0.12706        | -0.15905       | 0.099547  | 1.25177            | 14.478                      | 594.428                     |
| 7     | СРТ        | -1182.22            | -1182.24                     | -0.22711               | -0.0929                | 3.65         | 0.13426        | -0.15998       | 0.095314  | 1.191569           | 6.419                       | 265.418                     |
| 8     | auranofin  | -2334.77            | -2334.80                     | -0.20249               | -0.01960               | 4.98         | 0.18289        | -0.11104       | 0.033711  | 0.60717            | 8.0317                      | 328.53                      |

Table S2. Calculated energies and molecular properties computed at B3LYP/6-311G\*\* basis set level of theory for compounds 3, 4, 7 and 8, CPT and auranofin.<sup>a</sup>

<sup>[a]</sup> Abbreviations:  $\Delta G$  (g): Free energy in gas phase[A];  $\Delta G$  (aq): Free energy in aqueous medium[B];Gap: E<sub>HOMO</sub>-E<sub>LUMO</sub>;  $\eta$ : Hardnesses[C];  $\mu$ :Chemical Potentials[C];  $\omega$ :Global Electrophilicities[C] and  $\Delta N$ max: Maximun Number of Accepted Electrons[C].

[A] Computed a B3LYP(PCM)/6-311G\*\* + $\Delta$ ZPVE level; [B] Computed a B3LYP(PCM)/6-311G\*\* + $\Delta$ ZPVE level using water as solvent; [C]Computed at the B3LYP/6-311G\*\* level of theory according to the approach and equations described previously.<sup>1</sup>

Reference:

<sup>1</sup>B. Lecea, M. Ayerbe, A. Arrieta, F. P. Cossio, V. Branchadell, R. M. Ortuño and A. Baceiredo, *J. Org. Chem.*, 2007, **72**, 357–366.



Figure S1. MEP surfaces mapped from total electron density for compounds 3 and 4. Electrostatic potentials are displayed on a 0.002 a.u. isodensity surface. The limits of electrostatic potentials for each molecule are under surfaces. Potential increases in the following order: red (most negative)/orange/yellow/green/blue (most positive).



Auranofin

**Figure S2.** MEP surfaces mapped from total electron density for auranofin and compounds having the Au-perfluorophenyl ligand **7** and **8**. Electrostatic potentials are displayed on a 0.002 a.u. isodensity surface. The limits of electrostatic potentials for each molecule are under surfaces. Potential increases in the following order: red (most negative)/orange/yellow/green/blue (most positive).



#### **Complex 5**



<sup>19</sup>F NMR (470.17 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K)





190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

### Complex 6



<sup>19</sup>F NMR (470.17 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K)







#### **Complex 7a**









190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

#### **Complex 7b**



<sup>19</sup>F NMR (470.17 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K)





-- 39.89

#### **Complex 8**



<sup>19</sup>F NMR (470.17 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K)





190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 f1 (ppm)

|                                                                                                                                              | 5                                                     | 6                                                           | 8                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Empirical formula                                                                                                                            | C <sub>24</sub> H <sub>15</sub> AuF <sub>5</sub> PS   | C24H16AuF5NPS                                               | C43H26AuF5NPS                                               |
| Formula weight                                                                                                                               | 658.36                                                | 673.37                                                      | 911.64                                                      |
| Temperature/K                                                                                                                                | 293                                                   | 293                                                         | 293.0                                                       |
| Crystal system                                                                                                                               | triclinic                                             | monoclinic                                                  | triclinic                                                   |
| Space group                                                                                                                                  | P-1                                                   | $P2_1/n$                                                    | P-1                                                         |
| a/Å                                                                                                                                          | 7.3678(4)                                             | 12.2818(5)                                                  | 8.9368(3)                                                   |
| b/Å                                                                                                                                          | 9.2749(5)                                             | 12.6786(5)                                                  | 13.7072(6)                                                  |
| c/Å                                                                                                                                          | 16.2849(8)                                            | 15.1093(6)                                                  | 15.0808(5)                                                  |
| α/°                                                                                                                                          | 83.944(4)                                             | 90                                                          | 79.195(3)                                                   |
| β/°                                                                                                                                          | 79.946(4)                                             | 104.371(4)                                                  | 78.797(3)                                                   |
| γ/°                                                                                                                                          | 89.716(5)                                             | 90                                                          | 88.661(3)                                                   |
| Volume/Å <sup>3</sup>                                                                                                                        | 1089.53(10)                                           | 2279.14(16)                                                 | 1779.88(12)                                                 |
| Z                                                                                                                                            | 2                                                     | 4                                                           | 2                                                           |
| $\rho_{calc}g/cm^3$                                                                                                                          | 2.007                                                 | 1.962                                                       | 1.701                                                       |
| µ/mm⁻¹                                                                                                                                       | 6.973                                                 | 6.670                                                       | 4.296                                                       |
| F(000)                                                                                                                                       | 628.0                                                 | 1288.0                                                      | 892.0                                                       |
| Crystal size/mm <sup>3</sup>                                                                                                                 | $0.27 \times 0.22 \times 0.08$                        | $0.41 \times 0.11 \times 0.09$                              | $0.29 \times 0.18 \times 0.05$                              |
| Radiation                                                                                                                                    | MoK $\alpha$ ( $\lambda = 0.71073$ )                  | MoKa ( $\lambda = 0.71073$ )                                | MoK $\alpha$ ( $\lambda = 0.71073$ )                        |
| 2θ range for data collection/°                                                                                                               | 6.902 to 59.388                                       | 6.85 to 58.938                                              | 6.796 to 59.488                                             |
| Index ranges                                                                                                                                 | $-8 \le h \le 10, -11 \le k \le 12, -21 \le 1 \le 22$ | $-16 \le h \le 15, -16 \le k$<br>$\le 13, -18 \le 1 \le 13$ | $-12 \le h \le 11, -16 \le k$<br>$\le 17, -20 \le 1 \le 20$ |
| Reflections collected                                                                                                                        | 8331                                                  | 13272                                                       | 13693                                                       |
|                                                                                                                                              | $5059 [R_{int} = 0.0365]$                             | $5479 [R_{int} = 0.0366]$                                   | $8294 [R_{int} = 0.0289]$                                   |
| Independent reflections                                                                                                                      | $R_{sigma} = 0.07611$                                 | $R_{sigma} = 0.05391$                                       | $R_{sigma} = 0.06591$                                       |
| Data/restraints/parameters                                                                                                                   | 5059/0/289                                            | 5479/0/299                                                  | 8294/0/469                                                  |
| Goodness-of-fit on F <sup>2</sup>                                                                                                            | 0.994                                                 | 1.024                                                       | 1.047                                                       |
| $\mathbf{P} = 1 \mathbf{P} = 1 \mathbf{P} = 1 \mathbf{P} = 1 \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} P$ | $R_1 = 0.0423, wR_2 =$                                | $R_1 = 0.0409, wR_2 =$                                      | $R_1 = 0.0441$ , $wR_2 =$                                   |
| Final K indexes $[1 \ge 2\sigma(1)]$                                                                                                         | 0.0630                                                | 0.0714                                                      | 0.0766                                                      |
| Final D in damas [all data]                                                                                                                  | $R_1 = 0.0671, wR_2 =$                                | $R_1 = 0.0779, wR_2 =$                                      | $R_1 = 0.0736, wR_2 =$                                      |
| rmark muexes [an data]                                                                                                                       | 0.0742                                                | 0.0849                                                      | 0.0892                                                      |
| Largest diff. peak/hole /e Å-2                                                                                                               | 0.79/-1.01                                            | 0.86/-0.97                                                  | 0.98/-0.82                                                  |

**Table S1.** Crystal data and structure refinements for complexes 5, 6 and 8.



**Figure S3**. Partial view of crystal packing of **5**. Centroids of  $C_6F_5$  rings are shown as red circles and centroid…centroid distance is 3.754 Å. Color code: C, dark gray; P, orange; Au, S, yellow; F, green and H, gray.



**Figure S4**. Partial view of crystal packing of **6**. Centroids of  $C_6F_5$  rings are shown as red circles and centroid…centroid distance is 3.554 Å. Color code: C, dark gray; P, orange; Au, S, yellow; F, green; N blue and H, gray.



Figure S5. Partial view of crystal packing of 8. Centroids of  $C_6F_5$  rings are shown as red circles and centroid…centroid distance is 3.790 Å. Color code: C, dark gray; P, orange; Au, S, yellow; F, green and H, gray.