### ELECTRONIC SUPPORTING INFORMATION

# Phosphane-functionalized heavier tetrylenes: Synthesis of silyleneand germylene-decorated phosphanes and their reactions with Group 10 metal complexes

Javier A. Cabeza,<sup>a\*</sup> Pablo García-Álvarez,<sup>a</sup> Carlos J. Laglera-Gándara<sup>a</sup> and Enrique Pérez-Carreño<sup>b</sup>

<sup>a</sup>Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain. <sup>b</sup>Departamento de Química Física y Analítica, Universidad de Oviedo, 33071 Oviedo, Spain.

| 1. | NMR spectra                                    | S2  |
|----|------------------------------------------------|-----|
| 2. | Figures of DFT/NBO calculations                | S28 |
| 3. | XRD data                                       | S30 |
| 4. | Atomic coordinates of DFT-optimized structures | S31 |

#### 1. NMR spectra



Fig. S1 <sup>1</sup>H NMR spectrum (300.1 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub> (1<sub>Si</sub>).



Fig. S2 <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub> (1<sub>si</sub>).



Fig. S3  ${}^{31}P{}^{1}H$  NMR spectrum (121.5 MHz, C<sub>6</sub>D<sub>6</sub> 298 K) of Si( ${}^{t}Bu_2bzam$ )pyrmP ${}^{t}Bu_2$  (1<sub>si</sub>).



**Fig. S4** <sup>29</sup>Si{<sup>1</sup>H} NMR spectrum (79.5 MHz,  $C_6D_6$  298 K) of Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub> (**1**<sub>Si</sub>).



Fig. S5 <sup>1</sup>H NMR spectrum (300.1 MHz,  $C_6D_6$ , 298 K) of Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub> ( $1_{Ge}$ ).



**Fig. S6** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub> (**1**<sub>Ge</sub>).



Fig. S7  $^{31}P\{^{1}HNMR \text{ spectrum (121.5 MHz, } C_6D_6 \text{ 298 K) of Ge}(^{t}Bu_2bzam)pyrmP^{t}Bu_2 \text{ (} \textbf{1}_{Ge}\text{)}.$ 



**Fig. S9** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [NiCl<sub>2</sub>{ $\kappa^2 P$ ,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Ni-Si</sub>).

**Fig. S8** <sup>1</sup>H NMR spectrum (400.5 MHz,  $C_6D_6$ , 298 K) of [NiCl<sub>2</sub>{ $\kappa^2 P$ , Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Ni-Si</sub>).





Fig. S10 <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (162.1 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [NiCl<sub>2</sub>{ $\kappa^2 P$ ,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Ni-Si</sub>).



**Fig. S11** <sup>29</sup>Si{<sup>1</sup>H} NMR spectrum (79.5 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [NiCl<sub>2</sub>{ $\kappa^2$ *P*,*Si*-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Ni-Si</sub>).



**Fig. S12** <sup>1</sup>H NMR spectrum (400.5 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of [NiCl<sub>2</sub>{κ<sup>2</sup>P,Ge-Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Ni-Ge</sub>).



**Fig. S13** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of [NiCl<sub>2</sub>{ $\kappa^2 P$ , Ge-Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Ni-Ge</sub>).



**Fig. S14** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (162.1 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of [NiCl<sub>2</sub>{ $\kappa^2 P, Ge$ -Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Ni-Ge</sub>).



Fig. S15 <sup>1</sup>H NMR spectrum (400.5 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [PdCl<sub>2</sub>{κ<sup>2</sup>P,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (2<sub>Pd-Si</sub>).



Fig. S16 <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [PdCl<sub>2</sub>{κ<sup>2</sup>P,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (2<sub>Pd-Si</sub>).



**Fig. S17** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (162.1 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [PdCl<sub>2</sub>{ $\kappa^2 P$ , Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Pd-Si</sub>).



**Fig. S18**<sup>29</sup>Si{<sup>1</sup>H} NMR spectrum (79.5 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [PdCl<sub>2</sub>{ $\kappa^2 P$ , Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Pd-Si</sub>).



Fig. S19 <sup>1</sup>H NMR spectrum (400.5 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of [PdCl<sub>2</sub>{ $\kappa^2 P, Ge$ -Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (2<sub>Pd-Ge</sub>).



**Fig. S20** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of [PdCl<sub>2</sub>{κ<sup>2</sup>P,Ge-Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Pd-Ge</sub>).



**Fig. S21** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (162.1 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of [PdCl<sub>2</sub>{ $\kappa^2 P$ , *Ge*-Ge(<sup>*t*</sup>Bu<sub>2</sub>bzam)pyrmP<sup>*t*</sup>Bu<sub>2</sub>}] (**2**<sub>Pd-Ge</sub>).



Fig. S22 <sup>1</sup>H NMR spectrum (400.5 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [PtCl<sub>2</sub>{κ<sup>2</sup>P,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (2<sub>Pt-Si</sub>).



**Fig. S23** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [PtCl<sub>2</sub>{ $\kappa^2 P$ , Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Pt-Si</sub>).



Fig. S24 <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (162.1 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [PtCl<sub>2</sub>{κ<sup>2</sup>P,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (2<sub>Pt-Si</sub>).



**Fig. S25** <sup>29</sup>Si{<sup>1</sup>H} NMR spectrum (79.5 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [PtCl<sub>2</sub>{κ<sup>2</sup>P,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (**2**<sub>Pt-Si</sub>).



Fig. S26 <sup>1</sup>H NMR spectrum (400.5 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of [PtCl<sub>2</sub>{ $\kappa^2 P$ , Ge-Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}] (2<sub>Pt-Ge</sub>).



**Fig. S27** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of  $[PtCl_2{\kappa^2 P, Ge-Ge({}^{t}Bu_2bzam)pyrmP{}^{t}Bu_2}]$  (**2**<sub>Pt-Ge</sub>).



**Fig. S28** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (162.1 MHz, CD<sub>2</sub>Cl<sub>2</sub>, 298 K) of [PtCl<sub>2</sub>{ $\kappa^2 P$ , *Ge*-Ge(<sup>*t*</sup>Bu<sub>2</sub>bzam)pyrmP<sup>*t*</sup>Bu<sub>2</sub>}] (**2**<sub>Pt-Ge</sub>).



**Fig. S29** <sup>1</sup>H NMR spectrum (300.1 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [Ni{κ<sup>2</sup>P,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}(cod)] (**3**<sub>Ni-Si</sub>).



Fig. S30 <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [Ni{κ<sup>2</sup>P,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}(cod)] (3<sub>Ni-Si</sub>).



Fig. S31 <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (121.5 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [Ni{κ<sup>2</sup>P,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}(cod)] (3<sub>Ni-Si</sub>).



**Fig. S32** <sup>29</sup>Si{<sup>1</sup>H} NMR spectrum (79.5 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [Ni{ $\kappa^2 P$ ,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}(cod)] (**3**<sub>Ni-Si</sub>).



**Fig. S33** <sup>1</sup>H NMR spectrum (400.5 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [Ni{κ<sup>2</sup>P,Ge-Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}(cod)] (**3**<sub>Ni-Ge</sub>).



**Fig. S34** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [Ni{ $\kappa^2 P, Ge$ -Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}(cod)] (**3**<sub>Ni-Ge</sub>).



**Fig. S35** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (162.1 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [Ni{ $\kappa^2 P, Ge$ -Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}(cod)] (**3**<sub>Ni-Ge</sub>).



**Fig. S36** <sup>1</sup>H NMR spectrum (300.1 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [Pd{κ<sup>2</sup>P,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}(PPh<sub>3</sub>)] (**4**<sub>Pd-Si</sub>).



**Fig. S37** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of  $[Pd{\kappa^2 P, Si-Si({}^tBu_2bzam)pyrmP{}^tBu_2}(PPh_3)]$  (**4**<sub>Pd-Si</sub>).



**Fig. S38** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (162.1 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of  $[Pd{\kappa^2 P, Si-Si({}^tBu_2bzam)pyrmP{}^tBu_2}(PPh_3)]$  (**4**<sub>Pd-Si</sub>).



**Fig. S39** <sup>29</sup>Si{<sup>1</sup>H} NMR spectrum (79.5 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of  $[Pd{\kappa^2 P, Si-Si({}^tBu_2bzam)pyrmP{}^tBu_2}(PPh_3)]$  (**4**<sub>Pd-Si</sub>).



Fig. S40 <sup>1</sup>H NMR spectrum (300.1 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [Pt{κ<sup>2</sup>P,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}(PPh<sub>3</sub>)] (4<sub>Pt-Si</sub>).



**Fig. S41** <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of  $[Pt{\kappa^2 P, Si-Si({}^tBu_2bzam)pyrmP{}^tBu_2}(PPh_3)]$  (**4**<sub>Pt-si</sub>).



**Fig. S42** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (162.1 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of  $[Pt{\kappa^2 P, Si-Si({}^tBu_2bzam)pyrmP{}^tBu_2}(PPh_3)]$  (**4**<sub>Pt-Si</sub>).



Fig. S43 <sup>29</sup>Si{<sup>1</sup>H} NMR spectrum (79.5 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [Pt{κ<sup>2</sup>P,Si-Si(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}(PPh<sub>3</sub>)] (4<sub>Pt-si</sub>).



**Fig. S44** <sup>1</sup>H NMR spectrum (300.1 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of [Pt{κ<sup>2</sup>P,Ge-Ge(<sup>t</sup>Bu<sub>2</sub>bzam)pyrmP<sup>t</sup>Bu<sub>2</sub>}(PPh<sub>3</sub>)] (**4**<sub>Pt-Ge</sub>).



Fig. S45 <sup>13</sup>C{<sup>1</sup>H} NMR spectrum (100.6 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of  $[Pt{\kappa^2P,Ge-Ge({}^tBu_2bzam)pyrmP{}^tBu_2}(PPh_3)]$  (4<sub>Pt-Ge</sub>).



**Fig. S46** <sup>31</sup>P{<sup>1</sup>H} NMR spectrum (121.5 MHz, C<sub>6</sub>D<sub>6</sub>, 298 K) of  $[Pt{\kappa^2 P, Ge-Ge({}^{t}Bu_2bzam)pyrmP{}^{t}Bu_2}(PPh_3)]$  (**4**<sub>Pt-Ge</sub>).

## 2. Figures of DFT/NBO calculations



**Fig. S47** HOMO–7 (left) and HOMO–11 (right) orbitals of silylene-phosphane  $\mathbf{1}_{si}$ , corresponding to the lone pairs of the Si and P atoms, respectively.



**Fig. S48** HOMO–11 (left) and HOMO–10 (right) orbitals of germylene-phosphane  $\mathbf{1}_{Ge}$ , corresponding to the lone pairs of the Ge and P atoms, respectively.



Fig. S49 LUMOs of tetrylene-phosphanes  $\mathbf{1}_{Si}$  (left) and  $\mathbf{1}_{Ge}$  (right).



Fig. S50 HOMOs (top) and HOMOs–1 (bottom) of tetrylene-phosphanes  $\mathbf{1}_{Si}$  (left) and  $\mathbf{1}_{Ge}$  (right).

## 3. XRD data

|                                                | 1 <sub>si</sub>                                    | <b>2<sub>Pd-Si</sub></b> ·(C <sub>4</sub> H <sub>8</sub> O) | 3 <sub>Ni-Ge</sub>                                   | 4 <sub>Pd-Si</sub>       |
|------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|--------------------------|
| formula                                        | C <sub>28</sub> H <sub>46</sub> N <sub>3</sub> PSi | $C_{28}H_{46}CI_2N_3PPdSi \cdot (C_4H_8O)$                  | C <sub>36</sub> H <sub>58</sub> GeN <sub>3</sub> NiP | $C_{46}H_{61}N_3P_2PdSi$ |
| fw                                             | 483.74                                             | 733.14                                                      | 695.12                                               | 852.40                   |
| cryst syst                                     | monoclinic                                         | monoclinic                                                  | monoclinic                                           | orthorhombic             |
| space group                                    | <i>P</i> 21/c                                      | <i>P</i> 21/c                                               | <i>P</i> 21/c                                        | Pbca                     |
| <i>a</i> , Å                                   | 8.833(5)                                           | 18.2783(4)                                                  | 20.592(1)                                            | 18.1593(2)               |
| b, Å                                           | 18.065(5)                                          | 10.5426(2)                                                  | 8.8479(3)                                            | 20.9946(2)               |
| <i>c</i> , Å                                   | 18.265(5)                                          | 18.3984(4)                                                  | 20.8528(8)                                           | 23.5554(2)               |
| $\alpha$ , deg                                 | 90                                                 | 90                                                          | 90                                                   | 90                       |
| $\beta$ , deg                                  | 94.564(5)                                          | 94.109(2)                                                   | 109.118(5)                                           | 90                       |
| γ, deg                                         | 90                                                 | 90                                                          | 90                                                   | 90                       |
| <i>V</i> , Å <sup>3</sup>                      | 2905(2)                                            | 3536.3(3)                                                   | 3589.7(3)                                            | 8980.4(2)                |
| Z                                              | 4                                                  | 4                                                           | 4                                                    | 8                        |
| <i>F</i> (000)                                 | 1056                                               | 1536                                                        | 1480                                                 | 3584                     |
| $D_{\text{calcd}}$ , g cm <sup>-3</sup>        | 1.106                                              | 1.377                                                       | 1.286                                                | 1.261                    |
| μ, mm <sup>-1</sup> (Mo Kα)                    | 0.156                                              | 6.591                                                       | 1.434                                                | 4.510                    |
| cryst size, mm                                 | 0.18 x 0.18 x 0.09                                 | 0.39 x 0.14 x 0.10                                          | 0.22 x 0.14 x 0.09                                   | 0.31 x 0.25 x 0.13       |
| <i>Т</i> , К                                   | 100(2)                                             | 150(2)                                                      | 150(2)                                               | 150(2)                   |
| heta range, deg                                | 2.24 to 28.35                                      | 4.82 to 69.60                                               | 2.41 to 31.44                                        | 3.73 to 69.53            |
| min./max. <i>h</i> , <i>k</i> , I              | -11/11, -24/24, -23/24                             | -22/20, -12/9, -22/21                                       | -28/29, -12/12, -30/28                               | -22/14, -24/20, -28/23   |
| no. collected refins                           | 59980                                              | 15937                                                       | 51967                                                | 26822                    |
| no. unique reflns                              | 7251                                               | 6536                                                        | 11120                                                | 8279                     |
| no. refins with $l > 2\sigma(l)$               | 6123                                               | 6069                                                        | 5388                                                 | 7706                     |
| no. params/restraints                          | 310/0                                              | 382/0                                                       | 391/0                                                | 490/0                    |
| GOF (on F <sup>2</sup> )                       | 1.056                                              | 1.079                                                       | 1.011                                                | 1.027                    |
| $R_1$ (on <i>F</i> , <i>I</i> > $2\sigma(I)$ ) | 0.038                                              | 0.043                                                       | 0.075                                                | 0.026                    |
| $wR_2$ (on $F^2$ , all data)                   | 0.099                                              | 0.121                                                       | 0.108                                                | 0.068                    |
| min./max. $\Delta \rho$ , e Å <sup>-3</sup>    | -0.320/0.346                                       | -1.014/0.787                                                | -0.622/0.766                                         | -0.574/0.268             |
| CCDC dep. no.                                  | 2001500                                            | 2001500                                                     | 2001500                                              | 2001500                  |

**Table S1.** Crystal, measurement and refinement data for the compounds studied by X-ray diffraction.

# 4. Atomic coordinates of DFT-optimized structures

| <b>1</b> si |      |           |
|-------------|------|-----------|
| -           | 1000 | F 2074 74 |

| E = -18 | 889.52071712 | hartree   |           |
|---------|--------------|-----------|-----------|
| С       | 0.628182     | 3.052166  | 0.116815  |
| Н       | -0.148683    | 2.702633  | -0.582144 |
| Н       | 0.671813     | 4.149402  | 0.051841  |
| Н       | 0.323854     | 2.769920  | 1.135739  |
| С       | 2.389866     | 2.833471  | -1.658060 |
| Н       | 3.378668     | 2.428216  | -1.918647 |
| Н       | 2.437864     | 3.929130  | -1.757984 |
| Н       | 1.651531     | 2.451543  | -2.379619 |
| С       | 3.031210     | 2.955466  | 0.777550  |
| Н       | 2.803560     | 2.586197  | 1.789089  |
| Н       | 3.006680     | 4.055582  | 0.800598  |
| Н       | 4.052320     | 2.649704  | 0.513204  |
| С       | 1.992482     | 2.442376  | -0.227994 |
| С       | 2.689521     | -0.016627 | -0.217173 |
| С       | 4.174066     | 0.103329  | -0.246330 |
| С       | 4.842816     | 0.167413  | -1.471048 |
| Н       | 4.272600     | 0.117878  | -2.400560 |
| С       | 6.230304     | 0.290000  | -1.502934 |
| Н       | 6.747089     | 0.344565  | -2.462327 |
| С       | 6.954449     | 0.340214  | -0.312641 |
| Н       | 8.041239     | 0.435578  | -0.338572 |
| С       | 6.289096     | 0.268425  | 0.910755  |
| Н       | 6.852091     | 0.305420  | 1.844645  |
| С       | 4.901583     | 0.153066  | 0.945197  |
| Н       | 4.376229     | 0.104992  | 1.900636  |
| С       | 2.364189     | -2.552705 | -0.301162 |
| С       | 3.248547     | -2.936933 | -1.494676 |
| Н       | 2.757031     | -2.661271 | -2.440131 |
| Н       | 3.423677     | -4.023949 | -1.500293 |
| Н       | 4.227142     | -2.438340 | -1.449036 |
| С       | 3.071566     | -2.862590 | 1.024854  |
| Н       | 4.051144     | -2.367784 | 1.086142  |
| Н       | 3.238203     | -3.946807 | 1.117564  |
| Н       | 2.449447     | -2.532594 | 1.870609  |
| С       | 1.048749     | -3.339896 | -0.359184 |
| Н       | 0.400263     | -3.077271 | 0.490796  |
| Н       | 1.251424     | -4.420229 | -0.322013 |
| Н       | 0.504931     | -3.125693 | -1.292932 |
| С       | 0.276451     | -0.347438 | 2.241819  |
| Н       | 1.308188     | -0.009783 | 2.288363  |
| С       | -0.574439    | -0.739984 | 3.243892  |
| Н       | -0.339642    | -0.779941 | 4.305189  |
| С       | -1.819293    | -1.064439 | 2.627775  |
| Н       | -2.734047    | -1.388596 | 3.118363  |

| С  | -1.675614 | -0.855001 | 1.274777  |
|----|-----------|-----------|-----------|
| С  | -2.686475 | -1.017054 | 0.180057  |
| Н  | -2.928569 | -2.085376 | 0.055374  |
| н  | -2.263107 | -0.685818 | -0.780031 |
| С  | -5.330866 | -0.935992 | -0.937756 |
| С  | -4.559228 | -1.190760 | -2.240754 |
| н  | -5.248572 | -1.598361 | -3.000803 |
| н  | -3.753778 | -1.927471 | -2.108069 |
| Н  | -4.113598 | -0.276115 | -2.653891 |
| С  | -5.816573 | -2.288578 | -0.382406 |
| Н  | -6.400035 | -2.822461 | -1.152308 |
| Н  | -6.457023 | -2.151608 | 0.501867  |
| Н  | -4.980279 | -2.944108 | -0.091391 |
| С  | -6.569827 | -0.085699 | -1.248976 |
| Н  | -6.311626 | 0.831559  | -1.798066 |
| Н  | -7.113706 | 0.198894  | -0.334379 |
| Н  | -7.262480 | -0.663726 | -1.884513 |
| С  | -3.937029 | 1.662558  | 0.114015  |
| С  | -2.867885 | 2.100255  | 1.132778  |
| Н  | -1.891958 | 1.636553  | 0.942704  |
| Н  | -3.156912 | 1.847787  | 2.164616  |
| Н  | -2.738540 | 3.194962  | 1.070844  |
| С  | -3.427363 | 1.961228  | -1.299140 |
| Н  | -3.128344 | 3.022244  | -1.369963 |
| Н  | -4.201695 | 1.792065  | -2.062197 |
| Н  | -2.544805 | 1.355342  | -1.560581 |
| С  | -5.198192 | 2.495091  | 0.401618  |
| Н  | -4.947225 | 3.568982  | 0.357864  |
| Н  | -5.594545 | 2.283013  | 1.406855  |
| Н  | -6.001210 | 2.317923  | -0.325136 |
| Ν  | 1.808149  | 0.987024  | -0.116812 |
| Ν  | 1.983648  | -1.135149 | -0.352673 |
| Ν  | -0.381374 | -0.413580 | 1.025710  |
| Р  | -4.329099 | -0.167307 | 0.504939  |
| Si | 0.362511  | -0.161386 | -0.633214 |

#### $\mathbf{1}_{\mathsf{Ge}}$

| E = -3677.07755888 hartree |           |          |           |  |
|----------------------------|-----------|----------|-----------|--|
| С                          | 0.648631  | 3.076745 | 0.030413  |  |
| Н                          | -0.112751 | 2.741745 | -0.693116 |  |
| Н                          | 0.700547  | 4.174266 | -0.023030 |  |
| Н                          | 0.313061  | 2.786251 | 1.037147  |  |
| С                          | 2.455792  | 2.850205 | -1.698231 |  |
| Н                          | 3.443808  | 2.428675 | -1.935510 |  |
| Н                          | 2.524076  | 3.945293 | -1.793394 |  |
| Н                          | 1.730872  | 2.484100 | -2.441715 |  |
| С                          | 3.031087  | 2.967988 | 0.752408  |  |

| Н | 2.782835  | 2.590217  | 1.755812  |
|---|-----------|-----------|-----------|
| Н | 2.999151  | 4.067848  | 0.782702  |
| Н | 4.059653  | 2.670033  | 0.509897  |
| С | 2.017358  | 2.456760  | -0.280385 |
| С | 2.684375  | -0.006109 | -0.251004 |
| С | 4.166298  | 0.121123  | -0.136640 |
| С | 4.950824  | 0.211196  | -1.288811 |
| Н | 4.474542  | 0.167228  | -2.269923 |
| С | 6.333326  | 0.349117  | -1.183409 |
| Н | 6.940505  | 0.422566  | -2.087099 |
| С | 6.937494  | 0.388351  | 0.072361  |
| Н | 8.020264  | 0.495865  | 0.155083  |
| С | 6.156584  | 0.289838  | 1.223827  |
| Н | 6.625969  | 0.319198  | 2.208263  |
| С | 4.774045  | 0.159630  | 1.120531  |
| н | 4.158599  | 0.094380  | 2.019534  |
| С | 2.423836  | -2.543736 | -0.340791 |
| С | 3.468169  | -2.919001 | -1.400863 |
| Н | 3.107684  | -2.653179 | -2.406692 |
| Н | 3.655395  | -4.003841 | -1.376897 |
| Н | 4.425809  | -2.408874 | -1.225810 |
| С | 2.950433  | -2.841263 | 1.070672  |
| Н | 3.907743  | -2.334343 | 1.257907  |
| Н | 3.117917  | -3.922953 | 1.190253  |
| Н | 2.218461  | -2.515858 | 1.825380  |
| С | 1.144666  | -3.358671 | -0.573284 |
| Н | 0.380609  | -3.100417 | 0.176905  |
| Н | 1.356480  | -4.434814 | -0.492557 |
| Н | 0.732672  | -3.166382 | -1.577065 |
| С | 0.262243  | -0.382772 | 2.189387  |
| Н | 1.293821  | -0.041529 | 2.197071  |
| С | -0.551911 | -0.769921 | 3.227141  |
| Н | -0.278900 | -0.803077 | 4.279372  |
| С | -1.816602 | -1.098853 | 2.659229  |
| Н | -2.713579 | -1.419356 | 3.184224  |
| С | -1.718866 | -0.897464 | 1.298770  |
| С | -2.770942 | -1.048246 | 0.241582  |
| Н | -3.047206 | -2.110256 | 0.135583  |
| Н | -2.378209 | -0.736767 | -0.738202 |
| С | -5.444864 | -0.885824 | -0.851600 |
| С | -4.720340 | -1.157561 | -2.126987 |
| Н | -5.441690 | -1.549256 | -2.865401 |
| Н | -3.928073 | -1.912630 | -2.019200 |
| Н | -4.267776 | -0.252969 | -2.554681 |
| С | -5.951508 | -2.226280 | -0.234619 |
| Н | -6.578446 | -2.737865 | -0.985124 |
| Н | -6.554955 | -2.074638 | 0.672972  |

| Н  | -5.126012 | -2.908653 | 0.023405  |
|----|-----------|-----------|-----------|
| С  | -6.667915 | 0.450000  | -1.071562 |
| Н  | -6.438400 | 0.912929  | -1.623477 |
| Н  | -7.177013 | 0.294229  | -0.140235 |
| Н  | -7.394611 | -0.554676 | -1.689609 |
| С  | -3.948776 | 1.669466  | 0.214094  |
| С  | -2.835492 | 2.079857  | 1.196468  |
| Н  | -1.875980 | 1.597499  | 0.971957  |
| Н  | -3.093053 | 1.828241  | 2.236706  |
| Н  | -2.687122 | 3.172118  | 1.134638  |
| С  | -3.479914 | 1.957685  | -1.215145 |
| Н  | -3.147388 | 3.799300  | -1.294030 |
| Н  | -4.284545 | 1.815950  | -1.951840 |
| Н  | -2.628223 | 1.323330  | -1.509452 |
| С  | -5.178202 | 2.533692  | 0.543851  |
| Н  | -4.902250 | 3.686800  | 0.488848  |
| Н  | -5.543059 | 2.332854  | 1.563118  |
| Н  | -6.011047 | 2.375570  | -0.153049 |
| Ν  | 1.812486  | 1.443600  | -0.186997 |
| Ν  | 2.018212  | -1.136380 | -0.454462 |
| Ν  | -0.438074 | -0.459641 | 1.263600  |
| Р  | -4.378038 | -0.151600 | 0.613757  |
| Ge | 0.268879  | -0.170522 | -0.785168 |
|    |           |           |           |