Magnetic Field and Dilution Effects on the Slow Relaxation of $\left\{\mathrm{Er}_{3}\right\}$ Triangles Based Arsenotungstate Single-Molecule

Magnet

Wang, ${ }^{\text {a }}$ Yiquan Zhang*b and Jingyang Niu*a

${ }^{a}$ Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
${ }^{b} J i a n g s u$ Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China. E-mail: zhangyiquan@njnu.edu.cn.

Material and physical measurements

X-ray Crystallography
Computational details
Tables
Table S1 Crystallographic data and structure refinements for 1, 2 and $\operatorname{Er@2}$.
Table S2 BVS values for Er, As, and W atoms in 1.
Table S3 Possible geometries of nine coordinated metal centers.
Table S4 Deviation parameters calculated by SHAPE from each ideal polyhedron for Er1.
Table S5 Possible geometries of eight coordinated metal centers.
Table S6 Deviation parameters calculated by SHAPE from each ideal polyhedron for Er2 and Er3.
Table S7 Selected bond lengths (A) of 1.
Table S8 Selected bond angles (${ }^{\circ}$) of 1.
Table S9 Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data of 1.
Table S10 Calculated and found analyses of As, W, Er and Y in 1, $\mathbf{2}$ and $\operatorname{Er@2}$.
Table S11 Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data of Er@2.
Table S12 Calculated energy levels $\left(\mathrm{cm}^{-1}\right), \boldsymbol{g}\left(g_{x}, g_{y}, g_{z}\right)$ tensors and predominant m_{J} values of the lowest eight Kramers doublets (KDs) of individual Er^{3+} fragments for compound $\mathbf{1}$ using CASSCF/RASSI-SO with MOLCAS 8.4.
Table S13. Wave functions with definite projection of the total moment | $m_{\jmath}>$ for the lowest one or two KDs of individual Er^{3+} fragments from compound 1.
Table S14. Exchange energies $E\left(\mathrm{~cm}^{-1}\right)$, the energy difference between each exchange doublets $\Delta_{t}\left(\mathrm{~cm}^{-1}\right)$ and the main values of the g_{z} for the lowest four exchange doublets of compound 1.

Figures

Fig. S1. IR spectra of 1, 2 and Er@2, respectively.
Fig. S2. Thermogravimetric curves of 1, $\mathbf{2}$ and Er@2.

Fig. S3. EDX spectra of 1 and Er @ 2 show the presence of $\mathrm{C}, \mathrm{O}, \mathrm{As}, \mathrm{K}, \mathrm{W}$, Er and Y element in the lattice. The measured ratios of $\mathrm{Er}^{3+} / \mathrm{Y}^{3+}$ ions are almost consistent with nominal ratios.
Fig. S4. Frequency dependence of the in-phase ($\chi_{M}{ }^{\prime}-T$) and out-of-phase ($\chi_{\mathrm{M}}{ }^{\prime \prime}$) products under a zero dc field for $\mathbf{1}$. The lines are guides to the eyes.
Fig. S5. At 2.0 K , sweep field diagram of 1 from 0 to 5000 Oe , and the optimal dc field was determined to be 1500 Oe at $2.0 \mathrm{~K}, 707.2 \mathrm{~Hz}$.
Fig. S6. At 2.0 K , the real part (left) and imaginary part (right) of compound $\mathbf{1}$ ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.16421 ; \alpha_{2}=0.39146 ; \tau_{1}=2.22884 \times 10^{-4} \mathrm{~s} ; \tau_{2}=0.24782 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=11.01469 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=4.66775 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=8.76193 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.
Fig. S7. At 2.1 K , the real part (left) and imaginary part (right) of compound $\mathbf{1}$ ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.18020 ; \alpha_{2}=0.38504 ; \tau_{1}=1.81589 \times 10^{-4} \mathrm{~s} ; \tau_{2}=0.19757 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=10.61995 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=4.62245 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=7.62994 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.
Fig. S8. At 2.2 K , the real part (left) and imaginary part (right) of compound $\mathbf{1}$ ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.23469 ; \alpha_{2}=0.21989 ; \tau_{1}=1.48248 \times 10^{-4} \mathrm{~s} ; \tau_{2}=0.16258 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=10.16743 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=4.97757 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=4.31230 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.
Fig. S9. At 2.4 K , the real part (left) and imaginary part (right) of compound 1 ac signal frequency dependence diagram, solid line represents Debye model Fitting curve, fitting parameters: $\alpha_{1}=0.2878 ; \alpha_{2}=0.22097 ; \tau_{1}=1.00191 \times 10^{-4} \mathrm{~s} ; \tau_{2}=0.10621 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=9.67703 \mathrm{~cm}^{3} \mathrm{~mol}^{-}$ ${ }^{1} ; \Delta \chi_{1}=5.03636 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=3.30812 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.
Fig. S10. At 2.6 K , the real part (left) and imaginary part (right) of compound 1 ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.28777 ; \alpha_{2}=0.27865 ; \tau_{1}=7.99563 \times 10^{-5} \mathrm{~s} ; \tau_{2}=0.08430 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=9.66670 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=4.44723 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=3.11013 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.
Fig. S11. At 2.8 K , the real part (left) and imaginary part (right) of compound 1 ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.37304 ; \alpha_{2}=0.28301 ; \tau_{1}=3.58979 \times 10^{-5} \mathrm{~s} ; \tau_{2}=0.06086 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=9.14171 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=4.05652 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=2.01895 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.
Fig. S12. At 3.0 K , the real part (left) and imaginary part (right) of compound 1 ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.42971 ; \alpha_{2}=0.18214 ; \tau_{1}=2.33217 \times 10^{-5} \mathrm{~s} ; \tau_{2}=0.04121 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=7.511220 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=6.29960 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=1.61919 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.
Fig. S13. At 3.2 K , the real part (left) and imaginary part (right) of compound $\mathbf{1}$ ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.45949 ; \alpha_{2}=0.23169 ; \tau_{1}=9.37751 \times 10^{-6} \mathrm{~s} ; \tau_{2}=0.0295 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=7.35975 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=5.3805 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=1.32714 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.
Fig. S14. Plot of $\ln (\tau / s)$ versus T^{-1} for compound 1 under 1500 dc field. Left: FR process, right: SR process.
Fig. S15. Frequency dependence of the in-phase $\left(\chi_{M}{ }^{\prime} T\right.$) and out-of-phase ($\chi_{M}{ }^{\prime \prime}$) products under a zero dc field for Er@2.

Fig. S16. Cole-Cole plot under a zero dc field for Er@2 at the indicated temperatures. The lines are guides to the eyes.

Fig. S17. Plot of $\ln (\tau / s)$ versus T^{-1} of Er@2 under a zero dc field with fitting results.
Fig. S18. Frequency dependence of the in-phase ($\chi_{M}{ }^{\prime}$) and out-of-phase ($\chi_{M}{ }^{\prime \prime}$) products under an optimized 1500 Oe dc field for Er@2. The lines are guides to the eyes.
Fig. S19. plot of $\ln (\tau / s)$ versus T^{-1} for compound $\operatorname{Er} @ 2$ under 1500 dc field.
Fig. S20. Magnetization blocking barriers of individual Er^{3+} fragments from compound 1.
Fig. S21. Scheme of the $\mathrm{Er}^{3+}-\mathrm{Er}^{3+}$ interactions in compound 1.
Fig. S22. Calculated (red solid line) and experimental (white circle) data of magnetic susceptibility of $\left\{\mathrm{Er}_{3}\right\}$ fragment in $\mathbf{1}$. The intermolecular interaction $z J^{\prime}$ of $\left\{\mathrm{Er}_{3}\right\}$ fragment in $\mathbf{1}$ was fitted to $-0.16 \mathrm{~cm}^{-1}$.

Fig. S23. Calculated orientations of the local main magnetic axes on Er^{3+} ions of $\left\{\mathrm{Er}_{3}\right\}$ fragment in 1 in the ground KDs.
Fig. S24. Calculated model structures of individual Er^{3+} fragments in 1; H atoms are omitted for clarify.

Material and physical measurements

All other chemicals were commercially purchased and used without further purification. The potassium salt of the dilacunary $\mathrm{K}_{14}\left[\mathrm{As}_{2} \mathrm{~W}_{19} \mathrm{O}_{67}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ precursor was synthesized according to the reported literature ${ }^{51}$ and confirmed by IR spectrum. IR spectra of all compounds were recorded on a Bruker VERTEX 70 IR spectrometer using KBr pellets in the range of 4000-400 cm^{-1}. (Figure S1) Elemental analyses (C, H) were conducted on a Perkin-Elmer 2400-II CHNS/O analyzer. ICP analyses were performed on a PerkinElmer Optima 2000 ICP-OES spectrometer. (Table S10) Thermogravimetric analysis (TGA) analyses were performed on a NETZSCH STA 449 F5 Jupiter thermal analyzer in flowing N_{2} with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ (Figure S2). EDX measurements were recorded on a JSM-7610F scanning electron microscope with an OXFORD x-act EDS system (Figure S3). Variable-temperature magnetic susceptibility data were obtained on a SQUID magnetometer (Quantum Design, MPMS3) in the temperature range of 2-300 K.

X-ray Crystallography

Excellent single crystals of the three compounds were stilled in a capillary tube when prepared for data collection at $150(2) \mathrm{K}$ as they weather easily. Indexing and data collection were performed on a Bruker D8 VENTURE PHOTON II diffractometer with Mo K α radiation ($\lambda=$ $0.71073 \AA$ Å). Direct methods successfully located the tungsten atoms, and successive Fourier syntheses revealed the remaining atoms. Refinements were done by full-matrix least-squares on F^{2} using the SHELXL-2018 program suite for all data. ${ }^{52}$ In the final refinement, almost all the
atoms except few water O atoms were refined anisotropically; the disordered K countercations and few O atoms were refined isotropically. The hydrogen atoms of the malate groups were placed in calculated positions and then refined using a riding model. All H atoms on water molecules were directly included in the molecular formula.

Computational details

For three-dimensional cluster of compound 1, we extracted a three-core unit including three types of individual Er^{3+} fragments indicated as Er1, Er2 and Er3. Complete-active-space self-consistent field (CASSCF) calculations on three types of individual Er^{3+} fragments from complex 1 (see Figure S24 for the calculated model structures) on the basis of single-crystal X-ray determined geometry have been carried out with MOLCAS 8.4^{53} program package. Each individual Er^{3+} fragment was calculated keeping the experimentally determined structure of the corresponding compound while replacing the nearest neighboring Er^{3+} ions by diamagnetic Lu^{3+}, and the influence of the other surrounding W^{6+} ions were taken into account by the closed-shell Ba^{2+} ab initio embedding model potentials (AIMP; Ba.ECP.Pascual.0s.0s.0e-AIMP-BaF2.). ${ }^{54}$

The basis sets for all atoms are atomic natural orbitals from the MOLCAS ANO-RCC library: ANO-RCC-VTZP for Er^{3+}; VTZ for close O; VDZ for distant atoms. The calculations employed the second order Douglas-Kroll-Hess Hamiltonian, where scalar relativistic contractions were taken into account in the basis set and the spin-orbit couplings were handled separately in the restricted active space state interaction (RASSI-SO) procedure. For individual Er^{3+} fragment, active electrons in 7 active spaces include all f electrons (CAS(11 in 7 for $\left.\mathrm{Er}^{3+}\right)$) in the CASSCF calculation. To exclude all the doubts, we calculated all the roots in the active space. We have mixed the maximum number of spin-free state which was possible with our hardware (all from 35 quadruplets, all from 112 doublets). SINGLE_ANISO ${ }^{55}$ program was used to obtain energy levels, \boldsymbol{g} tensors, magnetic axes, et $\boldsymbol{a l}$., based on the above CASSCF/RASSI-SO calculations.

To fit the exchange interactions between Er^{3+} ions in compound 1, we took two steps to obtain them. Firstly, we calculated individual Er^{3+} fragments using CASSCF/RASSI-SO to obtain the corresponding magnetic properties. Then, the exchange interactions between the magnetic centers were considered within the Lines model, ${ }^{56}$ while the account of the dipole-
dipole magnetic couplings were treated exactly. The Lines model is effective and has been successfully used widely in the research field of d and f-elements SMMs. ${ }^{57}$

The Ising exchange Hamiltonian for $\mathbf{1}$ is:

$$
\begin{equation*}
\Psi_{\text {exch }}=-\stackrel{\circ}{J}_{1} \$_{E r 1} \$_{E r 2}-\stackrel{\circ}{J}_{2} \$_{E r 1} \$_{E r 3}-\stackrel{\circ}{J}_{3} \$_{E r 2} \$_{E r 3} \tag{1}
\end{equation*}
$$

The 9 total is the parameter of the total magnetic interaction $\left(\mathcal{J}_{\text {total }}=9 /{ }_{\text {dip }}+\mathcal{O}_{\text {exch }}\right)$ between magnetic center ions. The $S / \varepsilon_{r}=1 / 2$ is the ground pseudospin on Er^{3+} sites. The dipolar magnetic coupling can be calculated exactly, while the exchange coupling constants were fitted through comparison of the computed and measured magnetic susceptibilities using the POLY_ANISO program. ${ }^{57}$

Table S1. Crystallographic data and structure refinements for 1, 2 and Er@2.

	1	2	Er@2
Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{As}_{4} \mathrm{Er}_{6} \mathrm{~K}_{18} \mathrm{O}_{210} \mathrm{~W}_{38}$	$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{As}_{4} \mathrm{~K}_{16} \mathrm{O}_{208} \mathrm{~W}_{38} \mathrm{Y}_{6}$	$\begin{aligned} & \mathrm{C}_{8} \mathrm{H}_{6} \mathrm{As}_{4} \mathrm{Er}_{0.3} \mathrm{~K}_{20} \mathrm{O}_{219} \\ & \mathrm{~W}_{38} \mathrm{Y}_{5.7} \end{aligned}$
Formula weight	12455.47	11875.17	12231.07
Temperature / K	150(2)	150(2)	150(2)
Crystal system	Monoclinic	monoclinic	monoclinic
Space group	P2(1)/n	P2(1)/n	P2(1)/n
$a[A ̊]$	20.6656(19)	20.6656(19)	20.520(3)
$b[A ̊]$	25.056(2)	25.056(2)	24.926(4)
$c[A ̊]$	22.596(2)	22.596(2)	22.516(3)
$\beta\left[{ }^{\circ}\right]$	112.570(4)	112.570(4)	112.644(4)
$V\left[\AA^{3}\right]$	10804.1(17)	10804.1(17)	10629(3)
Z	2	2	2
$\rho_{\text {calcd }}\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	3.829	3.650	3.822
$\mu\left[\mathrm{mm}^{-1}\right]$	23.504	22.753	23.250
F(000)	10856.0	10400.0	10745.0
	$-24 \leq h \leq 21$	$-24 \leq h \leq 24$	$-24 \leq h \leq 23$
Index ranges	$-27 \leq k \leq 29$	$-29 \leq k \leq 29$	$-29 \leq k \leq 29$
	$-26 \leq 1 \leq 26$	$-23 \leq 1 \leq 26$	$-26 \leq 1 \leq 26$
Reflections collected	73900	122877	107923
Independent	19179	19174	18904
reflections	$\left[R_{\text {int }}=0.0385\right]$	$\left[R_{\text {int }}=0.0745\right]$	$\left[R_{\text {int }}=0.0559\right]$
data/restraints/param eters	19179/18/ 1257	19174/30/1243	18904/42/ 1360
Goodness-of-fit on F^{2}	1.043	1.017	1.038

$R_{1}, w R_{2}[I>2 \sigma(I)]$		$0.0348,0.0821$	$0.0394,0.0988$	$0.0305,0.0713$
$R_{1}, w R_{2}$ [all data]		$0.0412,0.0849$	$0.0497,0.1045$	$0.0372,0.0744$
Largest	diff.	$3.71 /-1.96$	$3.35 /-2.87$	$3.26 /-1.95$
Peak/hole/e \AA^{-3}				

Table S2 BVS values for Er, As, and W atoms in 1.

Atoms	BVS value	Atoms	BVS value	Atoms	BVS value
Er1	3.08	W4	6.18	W12	6.23
Er2	3.19	W5	6.16	W13	6.33
Er3	3.20	W6	6.21	W14	6.27
As1	2.97	W7	6.10	W15	6.06
As2	3.01	W8	5.96	W16	6.16
W1	6.09	W9	6.21	W17	5.95
W2	6.13	W10	6.27	W18	6.27
W3	6.41	W11	6.13	W19	6.24

Table S3 Possible geometries of nine coordinated metal centers.

geometry	point group	polyhedron
EP-9	$D_{9 \mathrm{~h}}$	Enneagon
OPY-9	$C_{8 v}$	Octagonal pyramid
HBPY-9	$D_{7 \mathrm{~h}}$	Heptagonal bipyramid
JTC-9	$C_{3 v}$	Johnson triangular cupola J3
JCCU-9	$C_{4 v}$	Capped cube J8
CCU-9	$C_{4 v}$	Spherical-relaxed capped cube
JCSAPR-9	$C_{4 v}$	Capped square antiprism J10
CSAPR-9	$C_{4 v}$	Spherical capped square antiprism
JTCTPR-9	$D_{3 \mathrm{~h}}$	Tricapped trigonal prism J51
TCTPR-9	$D_{3 \mathrm{~h}}$	Spherical tricapped trigonal prism
JTDIC-9	$C_{3 v}$	Tridiminished icosahedron J63
HH-9	$C_{2 v}$	Hula-hoop
MFF-9	$C s$	Muffin

Table S4 Deviation parameters calculated by SHAPE from each ideal polyhedron for Er1.

	Er1
EP-9	37.187
OPY-9	21.858
HBPY-9	19.340
JTC-9	15.716
JCCU-9	10.750
CCU-9	9.840
JCSAPR-9	1.437
CSAPR-9	0.640
JTCTPR-9	2.170
TCTPR-9	1.090

JTDIC-9	12.444
HH-9	10.886
MFF-9	0.730

Table S5 Possible geometries of eight coordinated metal centers.

geometry	point group	polyhedron
OP-8	$D_{8 \mathrm{~h}}$	Octagon
HPY-8	$C_{7 v}$	Heptagonal pyramid
HBPY-8	$D_{6 \mathrm{~h}}$	Hexagonal bipyramid
CU-8	O_{h}	Cube
SAPR-8	$D_{4 \mathrm{~d}}$	Square antiprism
TDD-8	$D_{2 \mathrm{~d}}$	Triangular dodecahedron
JGBF-8	$D_{2 \mathrm{~d}}$	Johnson gyrobifastigium (J26)
JETBPY-8	$D_{3 \mathrm{~h}}$	Johnson elongated triangular bipyramid
		(J14)
JBTPR-8	$C_{2 \mathrm{v}}$	Biaugmented trigonal prism (J50)
BTPR-8	$C_{2 \mathrm{v}}$	Biaugmented trigonal prism
JSD-8	$D_{2 \mathrm{~d}}$	Snub diphenoid(J84)
TT-8	T_{d}	Triakis tetrahedron
ETBPY-8	$D_{3 \mathrm{~h}}$	Elongated trigonal bipyramid

Table S6 Deviation parameters calculated by SHAPE from each ideal polyhedron for Er2 and Er3.

	Er2	Er3
OP-8	27.278	28.549
HPY-8	23.199	22.767
HBPY-8	15.383	16.065
CU-8	9.424	9.903
SAPR-8	0.648	0.742
TDD-8	2.773	1.395
JGBF-8	13.806	14.903
JETBPY-8	25.459	27.647
JBTPR-8	3.195	1.438

BTPR-8	2.504	1.148
JSD-8	5.545	3.674
TT-8	10.219	10.732
ETBPY-8	21.226	23.559

Table S7 Selected bond lengths (Å) of 1.

Bond	Length	Bond	Length	Bond	Length
Er1-O28	$2.568(8)$	Er2-O27	$2.279(8)$	Er3-O30	$2.265(8)$
Er1-O32	$2.353(8)$	Er2-O32	$2.301(8)$	Er3-O33	$2.303(7)$
Er1-O33	$2.340(8)$	Er2-062	$2.319(8)$	Er3-068	$2.308(8)$
Er1-O63	$2.605(8)$	Er2-O63	$2.484(8)$	Er3-072	$2.342(9)$
Er1-O64	$2.308(8)$	Er2-O1W	$2.383(7)$	Er3-O1W	$2.456(7)$
Er1-O1W	$2.328(7)$	Er2-O4W	$2.352(8)$	Er3-O7W	$2.393(8)$
Er1-O2W	$2.377(8)$	Er2-O5W	$2.409(9)$	Er3-O8W	$2.393(8)$
Er1-O3W	$2.400(8)$	Er2-O6W	$2.330(8)$	Er3-O9W	$2.381(8)$
Er1-O8W	$2.506(7)$				

Table S8 Selected bond angles $\left({ }^{\circ}\right)$ of 1.

Bond	Angel	Bond	Angel
O28-Er1-O63	$124.6(2)$	O48-Er3-O56	$75.330(15)$
O32-Er1-O28	$63.2(3)$	O30-Er3-O56	$145.274(22)$
O32-Er1-O63	$69.6(3)$	O74-Er3-O56	$121.051(17)$
O32-Er1-O2W	$134.1(3)$	O8W-Er3-O56	$79.343(15)$
O32-Er1-O3W	$82.9(3)$	O7W-Er3-O56	$74.347(14)$
O32-Er1-O8W	$137.2(3)$	O6W-Er3-O56	$74.599(14)$
O33-Er1-O28	$62.6(3)$	O30-Er3-O48	$139.355(18)$
O33-Er1-O32	$82.9(3)$	O74-Er3-O48	$72.278(13)$
O33-Er1-O63	$137.7(3)$	O8W-Er3-O48	$85.101(13)$
O33-Er1-O2W	$84.7(3)$	O7W-Er3-O48	$117.036(15)$
O33-Er1-O3W	$136.1(3)$		
O33-Er1-O8W	$67.4(3)$		
O64-Er1-O28	$139.1(3)$		
O64-Er1-O32	$139.5(3)$		
O64-Er1-O33	$134.9(3)$		
O64-Er1-O63	$71.1(3)$		
O64-Er1-O1W	$102.8(3)$		
O64-Er1-O2W	$73.9(3)$		
O64-Er1-O3W	$76.7(3)$		
O64-Er1-O8W	$68.8(3)$		
O1W-Er1-O28	$117.9(3)$		
O1W-Er1-O32	$72.1(3)$		
O1W-Er1-O33	$71.5(3)$		

O1W-Er1-063	69.7(2)		
O1W-Er1-O2W	142.7(3)		
O1W-Er1-O3W	140.5(3)		
O1W-Er1-O8W	69.7(2)		
O2W-Er1-028	71.9(3)		
O2W-Er1-063	137.4(3)	O6W-Er2-O4W	141.2(3)
O2W-Er1-O3W	76.0(3)	O6W-Er2-05W	72.7(4)
O2W-Er1-O8W	74.9(3)	O30-Er3-O33	77.7(3)
O3W-Er1-028	73.9(3)	O30-Er3-068	141.9(3)
O3W-Er1-063	73.1(3)	O30-Er3-O72	78.9(3)
O3W-Er1-O8W	139.7(3)	O30-Er3-01W	119.8(3)
O8W-Er1-028	121.2(2)	O30-Er3-07W	83.6(3)
O3W-Er1-063	112.8(2)	O30-Er3-08W	140.4(3)
O27-Er2-O32	75.7(3)	O30-Er3-09W	71.3(3)
O27-Er2-062	143.7(3)	O33-Er3-068	135.0(3)
O27-Er2-O63	140.4(3)	O33-Er3-072	81.0(3)
O27-Er2-O1W	120.2(3)	O33-Er3-O1W	69.9(3)
O27-Er2-O4W	74.2(3)	O33-Er3-07W	149.9(3)
O27-Er2-O5W	73.6(3)	O33-Er3-O8W	69.9(3)
O27-Er2-O6W	79.4(3)	O33-Er3-09W	115.7(3)
O32-Er2-062	140.5(3)	O68-Er3-072	119.2(3)
O32-Er2-O63	72.6(3)	O68-Er3-01W	70.1(2)
O32-Er2-O1W	72.1(3)	O68-Er3-07W	72.4(3)
O32-Er2-O4W	115.1(3)	O68-Er3-08W	77.4(3)
O32-Er2-O5W	144.5(3)	O68-Er3-09W	75.5(3)
O32-Er2-O6W	84.5(3)	072-Er3-O1W	139.3(3)
O62-Er2-063	71.9(3)	072-Er3-07W	72.4(3)
O62-Er2-O1W	80.3(3)	072-Er3-O8W	74.2(3)
O62-Er2-O4W	83.7(3)	072-Er3-09W	140.7(3)
O62-Er2-O5W	72.5(3)	O7W-Er3-O1W	140.3(3)
O62-Er2-06W	102.4(3)	O7W-Er3-08W	114.3(3)
O1W-Er2-063	71.1(3)	O8W-Er3-01W	69.5(3)
O1W-Er2-05W	140.3(3)	09W-Er3-01W	79.1(3)
O4W-Er2-063	141.6(3)	O8W-Er3-07W	79.3(3)
O4W-Er2-O1W	76.0(3)	O8W-Er3-O8W	143.9(3)
O4W-Er2-O5W	72.8(3)	Er1-O42-Er2	102.460(15)
O5W-Er2-063	124.1(3)	Er1-O48-Er3	100.564(14)
O6W-Er2-063	74.6(3)	Er1-O74-Er3	98.012(13)
O6W-Er2-O1W	142.8(3)		

Table S9 Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data of $\mathbf{1}$.

T / K	α_{1}	α_{2}	$\Delta \chi_{1} / \mathrm{cm}^{3}$ $\mathrm{~mol}^{-1}$	$\Delta \chi_{2} / \mathrm{cm}^{3}$ $\mathrm{~mol}^{-1}$	τ_{1} / s	τ_{2} / s	$\chi_{\mathrm{s}, \mathrm{to}} / \mathrm{cm}^{3}$ $\mathrm{~mol}^{-1}$
2.0	0.16421	0.39146	4.66775	8.76193	2.22884×10^{-4}	0.24782	11.01469
2.1	0.18020	0.38504	4.62245	7.62994	1.81589×10^{-4}	0.19757	10.61995
2.2	0.23469	0.21989	4.97757	4.31230	1.48248×10^{-4}	0.16258	10.16743
2.4	0.2878	0.22097	5.03636	3.30812	1.00191×10^{-4}	0.10621	9.67703
2.6	0.28777	0.27865	4.44723	3.11013	7.99563×10^{-5}	0.08430	9.66670
2.8	0.37304	0.28301	4.05652	2.01895	3.58979×10^{-5}	0.06086	9.14171
3.0	0.42971	0.18214	6.29960	1.61919	2.33217×10^{-5}	0.04121	7.511220
3.2	0.45949	0.23169	5.38050	1.32714	9.37751×10^{-6}	0.0295	7.35975

Table S10 Calculated and found analyses of As, W, Er and Y in 1, 2 and Er@2.

	sample	As (\%)	\mathbf{W} (\%)	$\operatorname{Er}(\%)$	$\mathbf{Y}(\%)$
calcd	$\mathbf{1}$	2.47	57.47	8.26	0
	$\mathbf{2}$	2.56	59.78	0	4.56
	Er@2	2.64	61.58	0.15	1.49
	$\mathbf{1}$	2.23	56.98	8.01	0
	$\mathbf{2}$	2.50	58.87	0	4.36
	Er@2	2.52	60.59	0.13	1.37

Table S11 Relaxation fitting parameters from least-squares fitting of $\chi(\omega)$ data of $\operatorname{Er@2}$.

T / K	α	$\chi_{1} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$	$\chi_{2} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$
2.0	0.56977	1.88534	0.02301
2.1	0.50005	1.39909	0.06637
2.4	0.52691	1.20601	0.08321
2.8	0.52698	1.00886	0.11625
3.2	0.57032	0.91715	0.11994
3.6	0.59532	0.80576	0.12169

Table S12 Calculated energy levels $\left(\mathrm{cm}^{-1}\right), \boldsymbol{g}\left(g_{x}, g_{y}, g_{z}\right)$ tensors and predominant m_{J} values of the lowest eight Kramers doublets (KDs) of individual Er^{3+} fragments for compound $\mathbf{1}$ using CASSCF/RASSI-SO with MOLCAS 8.4.

KDs	Er1			Er2			Er3		
	$\mathrm{E} / \mathrm{cm}^{-1}$	g	m_{J}	$\mathrm{E} / \mathrm{cm}^{-1}$	g	m_{J}	$\mathrm{E} / \mathrm{cm}^{-1}$	g	m_{J}
1	0.0	$\begin{gathered} 0.395 \\ 1.191 \\ 16.115 \end{gathered}$	$\pm 15 / 2$	0.0	$\begin{gathered} 0.043 \\ 0.062 \\ 17.421 \end{gathered}$	$\pm 15 / 2$	0.0	$\begin{gathered} 0.086 \\ 0.148 \\ 17.068 \end{gathered}$	$\pm 15 / 2$
2	80.3	$\begin{gathered} 0.897 \\ 2.471 \\ 10.879 \end{gathered}$	$\pm 5 / 2$	116.6	$\begin{gathered} 0.874 \\ 1.813 \\ 13.345 \end{gathered}$	$\pm 13 / 2$	138.8	$\begin{gathered} 1.561 \\ 2.726 \\ 12.392 \end{gathered}$	$\pm 13 / 2$
3	117.1	$\begin{array}{r} 0.922 \\ 1.901 \\ 10.162 \end{array}$	$\pm 1 / 2$	161.3	$\begin{gathered} 0.015 \\ 1.963 \\ 12.012 \end{gathered}$	$\pm 11 / 2$	207.2	$\begin{aligned} & 1.093 \\ & 2.856 \\ & 9.755 \end{aligned}$	$\pm 9 / 2$
4	162.5	$\begin{aligned} & 1.469 \\ & 4.315 \\ & 7.609 \end{aligned}$	$\pm 11 / 2$	220.2	$\begin{gathered} 0.416 \\ 2.881 \\ 11.691 \end{gathered}$	$\pm 5 / 2$	248.6	$\begin{aligned} & 7.431 \\ & 6.609 \\ & 2.442 \end{aligned}$	$\pm 5 / 2$
5	232.3	$\begin{aligned} & 3.956 \\ & 4.597 \\ & 7.758 \end{aligned}$	$\pm 9 / 2$	270.8	$\begin{aligned} & 2.705 \\ & 5.406 \\ & 8.505 \end{aligned}$	$\pm 9 / 2$	301.5	$\begin{aligned} & 0.252 \\ & 3.524 \\ & 9.834 \end{aligned}$	$\pm 11 / 2$
6	265.2	$\begin{array}{r} \hline 0.450 \\ 1.191 \\ 14.765 \end{array}$	$\pm 13 / 2$	327.5	$\begin{gathered} 1.181 \\ 1.984 \\ 10.632 \end{gathered}$	$\pm 7 / 2$	346.5	$\begin{aligned} & 1.805 \\ & 3.368 \\ & 9.362 \end{aligned}$	$\pm 7 / 2$
7	309.6	$\begin{gathered} 0.483 \\ 0.890 \\ 13.740 \end{gathered}$	$\pm 7 / 2$	422.2	$\begin{gathered} 0.174 \\ 0.247 \\ 13.294 \end{gathered}$	$\pm 3 / 2$	472.2	$\begin{gathered} 0.491 \\ 0.618 \\ 13.148 \end{gathered}$	$\pm 3 / 2$
8	463.1	$\begin{gathered} 0.044 \\ 0.084 \\ 17.138 \end{gathered}$	$\pm 3 / 2$	529.0	$\begin{gathered} 0.027 \\ 0.051 \\ 16.770 \end{gathered}$	$\pm 1 / 2$	605.9	$\begin{gathered} 0.000 \\ 0.056 \\ 16.523 \end{gathered}$	$\pm 1 / 2$

Table S13. Wave functions with definite projection of the total moment $\mid m_{J}>$ for the lowest one or two KDs of individual Er^{3+} fragments from compound 1.

Er1	E / cm^{-1}	wave functions
	0.0	$70.8 \%\| \pm 15 / 2>+21.7 \%\| \pm 11 / 2>$
Er2	80.3	$18.8 \%\| \pm 7 / 2>+18.6 \%\| \pm 9 / 2>+16.8 \%\| \pm 5 / 2>+15.2 \%\| \pm 3 / 2>+15.0 \%\| \pm 1 / 2>+11.1 \%\| \pm 13 / 2>$
	0.0	$91.4 \%\| \pm 15 / 2>+5.1 \%\| \pm 11 / 2>$
	116.6	$62.1 \%\| \pm 13 / 2>+16.0 \%\| \pm 7 / 2>+8.6 \%\| \pm 5 / 2>+8.3 \%\| \pm 9 / 2>$

Er3	0.0	$86.7 \%\| \pm 15 / 2>+10.8 \%\| \pm 11 / 2>$
	138.8	$57.7 \%\| \pm 13 / 2>+10.7 \%\| \pm 9 / 2>+9.3 \%\| \pm 7 / 2>+7.3 \%\| \pm 5 / 2>+5.4 \%\| \pm 1 / 2>+4.9 \%\| \pm 3 / 2>$

Table S14. Exchange energies $E\left(\mathrm{~cm}^{-1}\right)$, the energy difference between each exchange doublets $\Delta_{t}\left(\mathrm{~cm}^{-1}\right)$ and the main values of the g_{z} for the lowest four exchange doublets of $\left\{\mathrm{Er}_{3}\right\}$ fragment in 1.

	1		
	E	Δ_{t}	g_{z}
1	0.0	0.3×10^{-11}	29.318
2	0.3	0.1×10^{-11}	21.703
3	2.5	0.1×10^{-11}	22.833
4	4.9	0.1×10^{-11}	34.080

Fig. S1. IR spectra of 1, 2 and Er@2, respectively.

IR spectra of all compounds have been conducted on a Nicolet 170 SXFT-IR spectrometer in the range of $400-4000 \mathrm{~cm}^{-1}$ with KBr pellets, which are all very similar with only slight shifts in the position of the bands (Fig. S1). In their high wave-number region, a significant widen obvious broad band in the range of $3400-1623 \mathrm{~cm}^{-1}$ which are attributed to the stretching vibration $v(\mathrm{O}-\mathrm{H})$ and bending vibration $\delta(\mathrm{O}-\mathrm{H})$ of free modes of lattice and coordinated water
molecules, respectively. Due to the existence of the trivacant Keggin $\left[\mathrm{B}-\alpha-\mathrm{AsW}_{9} \mathrm{O}_{33}\right]^{9-}$ fragments in the skeletons of the three compounds, 1 shows bands in the region 1000-400 cm^{-1}, which correspond to the fingerprint region. In the low wave-number region, four characteristic peaks are seen, which are respectively explained by the asymmetric vibrations of the terminal $v\left(\mathrm{~W}-\mathrm{O}_{t}\right)$, corner-sharing $v\left(\mathrm{~W}-\mathrm{O}_{\mathrm{b}}\right)$ and $v\left(\mathrm{As}-\mathrm{O}_{\mathrm{a}}\right)$, and edge-sharing $v\left(\mathrm{~W}-\mathrm{O}_{\mathrm{c}}\right)$ bonds. The strong peak at $948 \mathrm{~cm}^{-1}$ is due to the $v\left(W-\mathrm{O}_{\mathrm{t}}\right)$ bond and the intense peak at 864 cm^{-1} is due to an $v\left(\mathrm{~W}-\mathrm{O}_{\mathrm{b}}\right)$ bond. Two medium intensity peaks at 789 and $718 \mathrm{~cm}^{-1}$ are due to $v\left(\mathrm{As}-\mathrm{O}_{\mathrm{a}}\right)$ and $v\left(\mathrm{~W}-\mathrm{O}_{\mathrm{c}}\right)$ bonds. In addition, in comparison with uncoordinated carboxylate acid (about $1700 \mathrm{~cm}^{-1}$), the band at $1630 \mathrm{~cm}^{-1}$ is assigned to COO^{-}stretching vibrations from the carboxylate of the monodentate-coordinated mal carboxylate ligands.

Fig. S2. Thermogravimetric curves of 1, 2 and Er@2.

Fig. S3. EDX spectra of 1 and Er@2 showing the presence of C, O, As, K, W, Er and Y element in the lattice. The measured ratios of $E r^{3+} / Y^{3+}$ ions are almost consistent with nominal ratios.
(a)

(b)

Fig. S4. Frequency dependence of the in-phase ($\chi_{\mathrm{M}}{ }^{\prime}$) and out-of-phase ($\chi_{\mathrm{M}}{ }^{\prime \prime}$) products under a zero dc field for 1.

Fig. S5. At 2.0 K , sweep field diagram of 1 from 0 to 5000 Oe , and the optimal dc field was determined to be 1500 Oe at $2.0 \mathrm{~K}, 707.2 \mathrm{~Hz}$.

Fig. S6. At 2.0 K , the real part (left) and imaginary part (right) of compound $\mathbf{1}$ ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.16421 ; \alpha_{2}=0.39146 ; \tau_{1}=2.22884 \times 10^{-4} \mathrm{~s} ; \tau_{2}=0.24782 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=11.01469 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=4.66775 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=8.76193 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

Fig. S7. At 2.1 K , the real part (left) and imaginary part (right) of compound $\mathbf{1}$ ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.18020 ; \alpha_{2}=0.38504 ; \tau_{1}=1.81589 \times 10^{-4} \mathrm{~s} ; \tau_{2}=0.19757 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=10.61995 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=4.62245 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=7.62994 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

Fig. S8. At 2.2 K , the real part (left) and imaginary part (right) of compound 1 ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.23469 ; \alpha_{2}=0.21989 ; \tau_{1}=1.48248 \times 10^{-4} \mathrm{~s} ; \tau_{2}=0.16258 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=10.16743 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=4.97757 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=4.31230 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

Fig. S9. At 2.4 K , the real part (left) and imaginary part (right) of complex 1 ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.2878 ; \alpha_{2}=0.22097 ; \tau_{1}=1.00191 \times 10^{-4} \mathrm{~s} ; \tau_{2}=0.10621 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=9.67703 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{1}=$ $5.03636 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=3.30812 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

Fig. S10. At 2.6 K , the real part (left) and imaginary part (right) of compound $\mathbf{1}$ ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.28777 ; \alpha_{2}=0.27865 ; \tau_{1}=7.99563 \times 10^{-5} \mathrm{~s} ; \tau_{2}=0.08430 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=9.66670 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=4.44723 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=3.11013 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

Fig. S11. At 2.8 K , the real part (left) and imaginary part (right) of compound 1 ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.37304 ; \alpha_{2}=0.28301 ; \tau_{1}=3.58979 \times 10^{-5} \mathrm{~s} ; \tau_{2}=0.06086 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=9.14171 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=4.05652 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=2.01895 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

Fig. S12. At 3.0 K , the real part (left) and imaginary part (right) of compound 1 ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.42971 ; \alpha_{2}=0.18214 ; \tau_{1}=2.33217 \times 10^{-5} \mathrm{~s} ; \tau_{2}=0.04121 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=7.511220 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=6.29960 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=1.61919 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$.

Fig. S13. At 3.2 K , the real part (left) and imaginary part (right) of compound $\mathbf{1}$ ac signal frequency dependence diagram, solid line represents Debye model fitting curve, fitting parameters: $\alpha_{1}=0.45949 ; \alpha_{2}=0.23169 ; \tau_{1}=9.37751 \times 10^{-6} \mathrm{~s} ; \tau_{2}=0.0295 \mathrm{~s} ; \chi_{\mathrm{s}, \text { tot }}=7.35975 \mathrm{~cm}^{3}$ $\mathrm{mol}^{-1} ; \Delta \chi_{1}=5.3805 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} ; \Delta \chi_{2}=1.32714 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$. The magnetic susceptibility data were described by the sum of two modified Debye functions:

$$
\begin{aligned}
& \frac{\left(\omega \tau_{1}\right)^{1-\alpha_{1}} \cos \left(\pi \alpha_{1} / 2\right)}{\chi^{\prime \prime}(\omega)=\Delta \chi_{1}{ }^{1+2\left(\omega \tau_{1}\right)^{1-\alpha_{1}} \sin \left(\pi \alpha_{1} / 2\right)+\left(\omega \tau_{1}\right)^{\left(2-2 \alpha_{1}\right)}}+\Delta \chi_{2}} \\
& \frac{\left(\omega \tau_{2}\right)^{1-\alpha_{2}} \cos \left(\pi \alpha_{2} / 2\right)}{1+2\left(\omega \tau_{2}\right)^{1-\alpha_{2}} \sin \left(\pi \alpha_{2} / 2\right)+\left(\omega \tau_{2}\right)^{\left(2-2 \alpha_{2}\right)}} \\
& \Delta \chi_{1}, \tau_{1}, \alpha_{1}, \Delta \chi_{2}, \tau_{2}, \alpha_{2} \\
& \chi^{\prime}(\omega)= \\
& 1+2\left(\omega \tau_{2}\right)^{1-\alpha_{2}} \sin \left(\pi \alpha_{2} / 2\right)+\left(\omega \tau_{2}\right)^{\left(2-2 \alpha_{2}\right)}
\end{aligned}
$$

$\chi_{s, t o t,} \Delta \chi_{1}, \tau_{1}, \alpha_{1}, \Delta \chi_{2}, \tau_{2}, \alpha_{2}$
(a)

(b)

Fig. S14. Plot of $\ln (\tau / s)$ versus T^{-1} for compound 1 under 1500 dc field. Left: FR process, right: SR process.

Fig. S15. Frequency dependence of the in-phase ($\chi^{\prime}{ }_{M}$) and out-of-phase ($\chi^{\prime \prime}{ }_{M}$) products under a zero dc field for Er@2.

Fig. S16. Cole-Cole plot under a zero dc field for Er@2 at the indicated temperatures. The lines are guides to the eyes.

Fig. S17. Plot of $\ln (\tau / \mathrm{s})$ versus T^{-1} of Er@2 under a zero dc field with fitting results.

Fig. S18. Frequency dependence of the in-phase ($\chi_{M}{ }^{\prime}$) and out-of-phase ($\chi_{M}{ }^{\prime \prime}$) products under an optimized 1500 Oe dc field for $\mathbf{E r @ 2}$. The lines are guides to the eyes.

Fig. S19. plot of $\ln (\tau / s)$ versus T^{-1} for compound $\operatorname{Er@2}$ under 1500 dc field.

(c)

Fig. S20. Magnetization blocking barriers of individual Er^{3+} fragments from compound 1: (a) Er1, (b) Er2 and (c) Er3. The thick black lines represent the KDs as a function of their magnetic moment along the magnetic axis. The green lines correspond to diagonal quantum tunneling of magnetization (QTM); the blue line represent off-diagonal relaxation process. The path shown by the red arrows represents the most probable path for magnetic relaxation in the corresponding compounds. The numbers at each arrow stand for the mean absolute value of the corresponding matrix element of transition magnetic moment.

Fig. S21. Scheme of the $\mathrm{Er}^{3+}-\mathrm{Er}^{3+}$ interactions in compound 1.

Fig. S22. Calculated (red solid line) and experimental (white circle) data of magnetic susceptibility of $\left\{\mathrm{Er}_{3}\right\}$ fragment in $\mathbf{1}$. The intermolecular interaction $z J^{\prime}$ of $\left\{\mathrm{Er}_{3}\right\}$ fragment in $\mathbf{1}$ was fitted to $-0.16 \mathrm{~cm}^{-1}$.

Fig. S23. Calculated orientations of the local main magnetic axes on Er^{3+} ions of $\left\{\mathrm{Er}_{3}\right\}$ fragment in 1 in the ground KDs.

Fig. S24. Calculated model structures of individual Er^{3+} fragments in 1; H atoms are omitted for clarify.

References:

S1 U. Kortz, M. G. Savelieff, B. S. Bassil and M. H. Dickman, Angew. Chem., Int. Ed., 2001, 40, 3384-3386.

S2 Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3-8.

S3 F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. Fdez. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P. Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, MOLCAS 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table, J. Comput. Chem., 2016, 37, 506-541.
S4 Seijo, L.; Barandiarán, Z. Computational Chemistry: Reviews of Current Trends; World Scientific, Inc.: Singapore, 1999; pp 455-152.
S5 (a) Chibotaru, L. F.; Ungur, L.; Soncini, A. Angew. Chem. Int. Ed., 2008, 47, 4126-4129. (b) Ungur, L.; Van den Heuvel, W.; Chibotaru, L. F. New J. Chem., 2009, 33, 1224-1230. (c) Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. J. Am. Chem. Soc., 2008, 130, 12445-12455.

S6 Lines, M. E. J. Chem. Phys. 1971, 55, 2977.
S7 (a) Mondal, K. C.; Sundt, A.; Lan, Y. H.; Kostakis, G. E.; Waldmann, O.; Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K. Angew. Chem. Int. Ed. 2012, 51, 7550-7554. (b) Langley, S.
K.; Wielechowski, D. P.; Vieru, V.; Chilton, N. F.; Moubaraki, B.; Abrahams, B. F.; Chibotaru, L. F.; Murray, K. S. Angew. Chem. Int. Ed. 2013, 52, 12014-12019.

