Supporting Information

Hydration of α -UO₃ following storage under controlled conditions of temperature and relative humidity

Marianne P. Wilkerson,*^a Sarah C. Hernandez,^a W. Tyler Mullen,^a Andrew T. Nelson,^a Alison L. Pugmire,^a Brian L. Scott,^a Elizabeth S. Sooby,^a Alison L. Tamasi,^{a,b} Gregory L. Wagner,^a and Justin R. Walensky^b

^aLos Alamos National Laboratory, Los Alamos, New Mexico 87545, United States ^bDepartment of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States

Table S1: Lattice parameters of the α -, β -, γ -, δ -	, ε -, and η -UO ₃ , and unassigned phases of UO ₃	, as reported in references 16-34.

phase	reported	a (Å)	b (Å)	<i>c</i> (Å)	α (°)	β(°)	γ(°)	space	symmetry	measure-	Ref.
	U:O							group		ment	
	stoichio-										
	metry										
	UO ₃	3.97	3.97	4.17		120.0		P3m1		XRD	16*
	UO ₃	3.91	6.94	4.17		90.0		C2mm		neutron	16*
	UO ₃	3.91	6.94	4.17		90.0		C2		neutron	16*
	UO ₃	6.84	43.45	4.157				<i>C</i> ₂₂₂	ortho-	neutron,	17*
									rhombic	electron	
	UO _{3-x}								pseudo-	XRD	18
									ortho-		
									rhombic		
	UO ₃	3.971		4.17					hexagonal	XRD	19*
	UO ₃	3.961	6.860	4.166					hexagonal	neutron	20
		±0.001	±0.002	±0.001							
α-UO ₃	UO ₃	3.913	6.936	4.167					ortho-	neutron	20
		±0.002	±0.003	±0.002					rhombic		
	UO ₃	6.878	3.971	4.168					hexagonal	XRD	21*
	UO _{2.94}	6.863	3.962	4.167					hexagonal	XRD	21*
	UO _{2.71}	6.823	3.939	4.144					hexagonal	XRD	21*
	UO _{2.90}	6.944	3.912	4.160					ortho-	XRD	21*
									rhombic		
	UO ₃	3.971		4.17					hexagonal	XRD	22*
	UO _{2.9}	6.91	3.92	4.16					ortho-	XRD	22*
									rhombic		
	UO ₃	12.98	10.70	7.49					ortho-	XRD	23*
									rhombic		

	UO ₃	3.963 ±0.004		4.160 ±0.008				$C_{3m_{-}}D_{3d}^{3}$	hexagonal	XRD	24
	UO ₃	10.34	14.33	3.91		99.0		P2 ₁		XRD	16*
	UO ₃	10.34	14.33	3.91		99.03			monoclinic	XRD	19*
	UO ₃	10.34	14.33	3.910		99.03		<i>P</i> 2 ₁ or	monoclinic	XRD	25
		±0.01	±0.01	±0.004		±0.02		P2 ₁ /m			
β -UO ₃	UO ₃	10.34	14.33	3.910		99.03		$P2_1(C_2^2)$	monoclinic	XRD	26
		±0.01	±0.01	±0.004		±0.01		or <i>P</i> 2 ₁ / <i>m</i>			
								(C_{2h}^{2})			
	UO ₃			14.3					ortho-	XRD	22*
									rhombic?		
	UO ₃	6.90	6.90	19.98		90.0		/41		neutron	16*
	UO ₃	9.79	19.93	9.71		90.0		Fddd		neutron	16*
	UO ₃ ª	6.9013(5)	6.9013(5)	19.9754(18)				I4 ₁ /amd	tetragonal	neutron	27
	UO ₃ ^b	9.787(3)	19.932(4)	9.705(3)				Fddd	ortho-	neutron	27
									rhombic		
	UO ₃ c	9.8225(7)	19.8487(15)	9.6318(7)				Pseudo- <i>F_{ddd}</i>	ortho-	neutron	27
									rhombic		
γ-003	UO ₃	9.813(8)	19.93(8)	9.711(8)				Fddd_ D_{2h}^{24}		XRD	28
	UO ₃	9.71	9.77	19.92					ortho-	XRD	19*
									rhombic		
	UO ₃	6.89	6.89	19.94	90	90	90.34	I4 ₁ /amd	tetragonal	XRD	29*
	UO ₃	13.01	15.48	7.50					ortho-		22*
									rhombic		
	UO ₃	13.08	15.48	6.91		89.63			monoclinic	XRD	22*
	UO ₃	4.17	4.17	4.17		90.0		Pm ³ m	cubic	neutron	16*
δ-110-	UO ₃	4.146(12)	4.146(12)	4.146(12)					cubic	XRD	30
	UO ₃	4.165(8)	4.165(8)	4.165(8)					cubic	neutron	30
	UO ₃	4.16							cubic	XRD	19*

	UO ₃	4.16							cubic	XRD	22*
	UO ₃	4.138							cubic	XRD	31
		±0.005									
с U0	UO ₃	4.002	3.841	4.165	98.10	90.20	120.17		triclinic	XRD	19*
8-003	UO ₃									XRD	22
	UO ₃	7.51	5.47	5.22		90.0		P2 ₁ 2 ₁ 2 ₁		XRD	16*
η-UO₃	UO ₃	7.511	5.466	5.224				P2 ₁ 2 ₁ 2 ₁	ortho	XRD	32
		±0.009	±0.008	±0.008					rhombic		
	UO ₃	4.002	3.841	4.165	98°17′	90°33′	120°28′		triclinic	XRD	33*
UO ₃	UO ₃	13.05	15.45	6.89		89.63			monoclinic	XRD	34
		±0.02	±0.05	±0.02		±0.01					

*No error reported.

^ameasured at 373 K

^bmeasured at 323, 293 K

^cmeasured at 77 K

Note: Zachariasen assigned the α -UO₃ structure to hexagonal P^3m1 .¹⁶ Following XRD and neutron diffraction analyses, Loopstra and Cordfunke proposed that the hexagonal assignment was incorrect, and then prepared UO_{2.9} by thermal decomposition of uranyl peroxide at 450 °C in the absence of nitrate.²⁰ After cooling to room temperature, the UO_{2.9} formed orthorhombic α -UO₃ characterized by a space group of C2*mm*.²⁰ The discrepancy between the densities reported by Hoekstra and Siegel (7.04 g cm⁻³),²² Loopstra and Cordfunke (7.25 g cm⁻³),²⁰ and Siegel and Hoekstra (7.30 g cm⁻¹)¹⁸ versus the density also calculated by Seigel and Hoekstra (8.39 g cm⁻³) led Greaves and Fender to characterize α -UO₃ as an imperfect orthorhombic *C*222 structure in which ~12% of the U lattice sites are vacant.¹⁷ In models reported separately by Greaves versus Loopstra and Cordfunke, axial oxygen (O1) sites contribute to the –oxo-U-oxo-U-oxo- chains, and equatorial oxygen (O2) sites lie in the equatorial (110) plan.^{17,20} The O2 atoms occupy slightly distorted hexagonal bipyramidal coordination along the (001) plane. Due to the complexity of the *C*222 model, we chose to use the orthorhombic *C*2*mm* structure proposed by Loopstra and Cordfunke for our simulations.²⁰

reported	species	a (Å)	b (Å)	c (Å)	β(°)	space	symmetry	measure-	Ref.
UO ₂ :H ₂ O						group		ment	
stoi-									
chiometry									
	$[(UO_2)_8O_2(OH)_{12}](H_2O)_{12}$	14.337(3)	16.813(4)	14.731(4)		P2 ₁ ca	ortho-	XRD	35
003.2.23020							rhombic		
	(UO ₂) ₄ O(OH) ₆ ·5H ₂ O	14.6861(4)	13.9799(3)	16.7063(5)		Pbcn	ortho-	XRD	36
							rhombic		
	α -UO ₃ ·2H ₂ O							XRD	21
							ortho-	XRD	21
							rhombic		
003.20	003·2H ₂ 0 β-003·2H ₂ 0	13.977	16.696	14.672			ortho-		37
		±0.004	±0.004	±0.004			rhombic		
	UO ₃ ·2H ₂ O	13.997(4)	16.696(4)	14.672(4)		Pbna	ortho-		38
							rhombic		
								EXAFS	39
		4.2455(6)	10.3183(16)	6.8648(10)		Стса			40
						or C2cb			
		4.242(1)	10.302(1)	6.868(1)		Стса	ortho-	XRD	38, 41,
	α -UO ₂ (OH) ₂					or C2cb	rhombic		42
								neutron	42
UO ₃ ·H ₂ O							ortho-	XRD	43
							rhombic		
		5.6438(1)	6.2867(1)	9.9372(2)		Pbca	ortho-	XRD	38, 40
	 β_U_O_(OH)_						rhombic		
	p-00 ₂ (0n) ₂	5.6438	6.2867	9.9372		Pbca	ortho-	XRD	44
		±0.0001	±0.0001	±0.0002			rhombic		

								neutron	42, 45
		6.295	5.636	9.92		Fmmm	ortho-	XRD	46
		±0.005	±0.005	±0.01			rhombic		
	γ-UO ₂ (OH) ₂	6.419(2)	5.518(2)	5.561(2)	112.77	P2 ₁ /c	monoclinic	XRD	38
		5.560(3)	5.522(3)	6.416(3)	112.71	P2₁/c	monoclinic	XRD	47
								XRD	21
							hexagonal	XRD	43
								XRD	21
	0-00 ₂ (0H) ₂						triclinig	XRD	43
	ε-UO ₃ ·H ₂ O	6.419	5.518	5.561	112°46′	$C_{\rm m}(C_s^3),$	monoclinic	XRD	48
		±0.002	±0.002	±0.002	±3'	$C2(C_2^3)$			
						or <i>C</i> 2/ <i>m</i>			
						(C_{2h}^{3})			
	UO ₂ (OH) ₂	5.635	6.285	9.919		Pbca	ortho-	XRD	49
		±0.007	±0.008	±0.008			rhombic		
		5.638	6.273	9.925		Pbca	ortho-	XRD	50
		±0.005	±0.005	±0.005			rhombic		
	α -UO ₃ ·0.8H ₂ O	4.27-	10.19-	6.86-6.96(1)			ortho-	XRD	38
		4.30(1)	10.24(1)				rhombic		
	β -UO ₃ ·0.8H ₂ O						ortho-	XRD	21
003.0.081120							rhombic		
	UO ₃ ·0.8H ₂ O	10.23	6.89	4.28			ortho-	XRD	50
		±0.01	±0.01	±0.01			rhombic		

Table S3: Conditions (temperature, relative humidity), resultant water vapor density, and salt used to prepare saturated aqueous solutions used for storage of α -UO₃ subsamples.^{11,59-61}

condition	temperature	relative	water vapor	salt used to prepare
	(°C)	humidity (%)	density (g/cm³)	saturated aqueous soltuion
1	5	25	1.7 x 10 ⁻⁶	lithium iodide
2	37	15	6.6 x 10 ⁻⁶	lithium iodide
3	5	97	6.7 x 10 ⁻⁶	potassium nitrate
4	37	89	39 x 10 ⁻⁶	potassium nitrate

Table S4: Fit results of α -UO₃ at time 0 and after 0.5 years of storage under Condition 1, Condition 2, Condition 3, and Condition 4. The k^3 -weighted U L_{III}-edge data are transformed between $k = [2.5 - 15.0 \text{ Å}^{-1}]$ and narrowed by a Gaussian window of 0.3 Å⁻¹. Fit range is between R = [1.5 Å - 6.5 Å]; S_0^2 is constrained to 1.0; and the number of scatterers *N*, the distance *R*, and the Debye-Waller factor are varied. A multiple scattering path summing all the high *R* multiple scattering paths (R > 4.5 Å) was included. Reported errors are determined using a Monte Carlo method and primarily reflect reproducibility.⁷⁶ Absolute errors for σ^2 and *R* are ~ 10% and 0.005 Å for near neighbors, and 20% and 0.02 Å for further neighbors, respectively.

	time	e 0		time	0.5 years C	ondition 1	time 0.5 years Condition 2		
U L _{III} edge	N	<i>R</i> (Å)	$\sigma^2(\text{\AA}^2)$	N	<i>R</i> (Å)	σ²(Ų)	N	<i>R</i> (Å)	<i>σ</i> ²(Ų)
U-0	-	-	-	1.1	1.667	0.0030	1.3	1.765	0.0025
U-0	0.5	1.926	0.0100	1.1	2.111	0.0029	3.3	2.034	0.0040
U-0	2.6	2.220	0.0025	2.2	2.269	0.0022	-	-	-
U-0	0.1	2.482	0.0025	1.7	2.540	0.0050	4.2	2.649	0.0049
U-U	7.2	3.779	0.0096	-	-	-	-	-	-
U-U	6.9	4.162	0.0031	0.6	4.124	0.0025	1.9	4.035	0.0069
$\Delta E_{o} R(\%)$		-13.0 31			-4.4 24			10 27	
				time	0.5 years C	ondition 3	time	0.5 years C	ondition 4
U L _{III} edge				N	<i>R</i> (Å)	<i>σ</i> ²(Ų)	N	<i>R</i> (Å)	<i>σ</i> ²(Ų)
U-0				2.0	1.763	0.2500	2.3	1.760	0.0027
U-0				5.0	2.033	0.0045	3.6	2.038	0.0026
U-0				2.9	2.347	0.0040	3.7	2.360	0.0047
U-0				2.9	2.662	0.0029	1.9	2.689	0.0025
U-U				-	-	-	-	-	-
U-U				2.9	4.036	0.0099	2.3	4.072	0.0081
$\Delta E_{o} R(\%)$					6.9 20			2.1 20	

Table S5: Fit results of α -UO₃ at time 0 and after 3 years of storage under Condition 1, Condition 2, Condition 3, and Condition 4. The k^3 -weighted U L_{III}-edge data are transformed between $k - [2.5 - 15.0 \text{ Å}^{-1}]$ and narrowed by a Gaussian window of 0.3 Å⁻¹. Fit range is between R = [1.5 Å - 6.5 Å] with N, R, and σ^2 varying and S_0^2 fixed to 1.0. Reported errors are similar to those reported in Table S-4.

	time	e 0		time	3 years Co	ondition 1	time 3 years Condition 2		
U L _{III} edge	N	<i>R</i> (Å)	$\sigma^2(\text{\AA}^2)$	N	<i>R</i> (Å)	$\sigma^2(\text{\AA}^2)$	N	<i>R</i> (Å)	σ²(Ų)
U-0	-	-	-	1.1	1.842	0.0025	1.3	1.767	0.0050
U-0	0.5	1.926	0.0100	0.9	2.145	0.0025	3.3	2.040	0.0025
U-0	2.6	2.220	0.0025	-	-	-	-	-	-
U-0	0.1	2.482	0.0025	1.6	2.715	0.0062	4.0	2.643	0.0034
U-U	7.2	3.779	0.0096	1.0	3.831	0.0025	-	-	-
U-U	6.9	4.162	0.0031	3.6	4.186	0.0025	0.9	3.979	0.0025
$\Delta E_{o} R(\%)$		-13.0 31			-10 23			10 26	
				time	3 years Co	ondition 3	time	ondition 4	
U L _{III} edge				N	<i>R</i> (Å)	σ²(Ų)	N	<i>R</i> (Å)	<i>σ</i> ²(Ų)
U-0				1.8	1.764	0.0025	1.9	1.770	0.0025
U-0				3.6	2.063	0.0025	4.8	2.032	0.0047
U-0				3.5	2.362	0.0025	2.2	2.345	0.0025
U-0				1.4	2.715	0.0100	4.6	2.668	0.0100
U-U				-	-	-	-	-	-
U-U				1.5	4.031	0.0025	2.3	4.009	0.0085
$\Lambda \in D(0/2)$					1.6 38			1.6 25	

Table S6. Lattice constants *a*, *b*, *c*, α , β , and γ of the lattice constants from those of the theoretically relaxed α -UO₃ structure following addition of 1, 2 or 3 interstitial H₂O molecules or 1, 2 or 3 interstitial OH groups into the relaxed α -UO₃ lattice.

	a (Å)	b (Å)	<i>c</i> (Å)	%∆ <i>a</i>	%∆b	%∆ <i>c</i>	α(°)	β(°)	γ(°)
Theoretical	3.953	6.827	4.177	-	-	-	90	90	90
1 H ₂ O	4.296	6.384	4.264	8.323	-6.701	2.076	93.635	90.269	87.903
2 H ₂ O	4.286	7.175	4.321	8.090	4.981	3.392	90.206	93.758	90.100
3H ₂ O	4.021	7.459	4.325	1.700	8.859	3.498	92.764	93.984	90.648
1 OH	4.368	6.495	4.307	9.980	-4.974	3.067	94.558	90.156	93.055
2 OH	4.321	6.490	4.519	8.905	-5.052	7.885	89.475	89.774	90.879
3 OH	4.231	7.628	4.251	6.803	11.088	1.776	90.153	90.729	101.149

Table S7. Average U-O1 and U-O2 bond lengths and U-U distances calculated for relaxed structures of α -UO₃ following addition of 1, 2 or 3 interstitial H₂O molecules and 1, 2 or 3 interstitial OH groups into the α -UO₃ lattice. Numbers in the parentheses indicate the percent of U-O1, U-O2 and U-U bonds that are the theoretical bonds in unperturbed α -UO₃.

	U-O1 (Å)	U-O2 (Å)	U-U (Å)
Experimental	2.083	2.096	3.961
Theoretical	2.088	2.279	3.947
1 H ₂ O	1.895 (43.06%)	1.892 (20.37%)	3.801 (32.61%)
2 H ₂ O	1.873 (41.67%)	2.036 (40.74%)	3.766 (16.85%)
3 H ₂ O	1.876 (40.28%)	1.876 (13.43%)	3.761 (17.93%)
1 OH	1.876 (40.28%)	2.023 (37.96%)	3.814 (28.80%)
2 OH	1.848 (40.28%)	1.848 (13.43%)	3.783 (26.63%)
3 OH	1.894 (40.28%)	2.001 (36.57%)	3.732 (15.22%)

Initial	Final	O-H (Å)	O-H-O (°)	O2-H (Å)	O2-H-O2 (°)	0-02 (Å)
1 H ₂ O	1 H ₂ O	0.992, 1.026	109.867	-	-	-
2 H ₂ O			-	0.979,	-	
	4 OH,			0.982,		
	1 O ₂	0.982		1.002		1.447
3H ₂ O				0.978,		
	2 H ₂ O,			0.986,		
	2 OH,			1.001,		
	2 O ₂	0.975, 1.010	107.028	1.020	112.469	1.387, 1.441
1 OH	1 OH	0.990	-	-	-	-
2 OH	2 OH,					
	1 O ₂	1.009	-	0.981	-	1.474
3 OH	3 OH,			0.988,		
	2 O ₂	0.985	-	0.998	-	1.424, 1.474
Experimental	OH-	0.970	-	-	-	-
	H ₂ O	0.958	104.450	-	-	
	O ₂ ²⁻	-	-	-	-	1.447

Table S8: Final state, bond lengths and angles of initial 1, 2 or 3 H_2O molecules and 1, 2 or 3 OH groups after relaxation.

Figure S2. Fourier Transforms (FTs) of U L_{III} EXAFS data for α -UO₃ after storage for 0.5 years under Condition 1. Data is shown as solid lines; fits to the data are displayed as dashed lines.

Figure S3. Fourier Transforms (FTs) of U L_{III} EXAFS data for α -UO₃ after storage for 0.5 years under Condition 2. Data is shown as solid lines; fits to the data are displayed as dashed lines.

Figure S4. Fourier Transforms (FTs) of U L_{III} EXAFS data for α -UO₃ after storage for 0.5 years under Condition 3. Data is shown as solid lines; fits to the data are displayed as dashed lines.

Figure S5. Fourier Transforms (FTs) of U L_{III} EXAFS data for α -UO₃ after storage for 0.5 years under Condition 4. Data is shown as solid lines; fits to the data are displayed as dashed lines.

Figure S6. Fourier Transforms (FTs) of U L_{III} EXAFS data for α -UO₃ after storage for 3 years under Condition 1. Data is shown as solid lines; fits to the data are displayed as dashed lines.

Figure S7. Fourier Transforms (FTs) of U L_{III} EXAFS data for α -UO₃ after storage for 3 years under Condition 2. Data is shown as solid lines; fits to the data are displayed as dashed lines.

Figure S8. Fourier Transforms (FTs) of U L_{III} EXAFS data for α -UO₃ after storage for 3 years under Condition 3. Data is shown as solid lines; fits to the data are displayed as dashed lines.

Figure S10. X-ray diffraction pattern of α -UO₃ sample stored under Condition 1 for 5 years. The composition is predominantly α -UO₃ as indicated by the orange peak markers for PDF 00-012-0043. The arrow indicates a small contribution from UO₃·xH₂O type phases.

