A A porous Zn(II)-coordination polymer based on tetracarboxylic acid exhibiting selective CO₂ adsorption and iodine uptake

Mürsel Arici^{a,*}, Tuğba Alp Arici^b, Hakan Demiral^c, Murat Taş^d and Okan Zafer Yeşilel^a

^aDepartment of Chemistry, Faculty of Science and Letters, Eskişehir Osmangazi University,

26040 Eskişehir, Turkey

^bDepartment of Chemical Technology, Emet Vocational School, Kütahya Dumlupınar University, 43700, Kütahya, Turkey

^cDepartment of Chemical Engineering, Faculty of Engineering and Architecture, Eskişehir Osmangazi University, 26040 Eskişehir, Turkey

^dDepartment of Science Education, Education Faculty, Ondokuz Mayıs University, 55139, Samsun, Turkey

Contents:

Table and Figure Captions

Table S1. Selected bond distance (Å) and angle (°) data for 1

Table S2. Selected bond distance (Å) and angle (°) data for 2

Table S3. Selected bond distance (Å) and angle (°) data for $2a@I_2$

Fig. S1. a) The coordination environments of the Zn(II) ions in the paddle-wheel cluster (b)

View of the 3D framework of [Zn₂(abtc)] (1,4-betib ligands removed for clarity) (c) Space-

filling mode of 3D structure in 1 and 2 along the c-axis

Fig. S2. PXRD patterns of simulated and as-synthesized compounds

Fig. S3. PXRD patterns of compound 2 before and after fully activation at 140°C

Fig. S4. N₂ adsorption-desorption isotherms of **2a** at 77 K

Fig. S5. The photographs of I_2 adsorption of 2a in cyclohexane with time

Fig. S6. The color change of **2a** after exposure to I_2 vapor at 75°C

Fig. S7. (a) IR spectra of 2a before and after I₂ adsorption in solution and vapor phase (b)
PXRD patterns of 2a, 2a@I₂(solvent), 2a@I₂(vapor) and 2a@I₂(desorption)
Fig. S8. (a) I₂ release of 2a@I₂ (10 mg) into methanol (10 mL) with time (b) the curve of I₂ desorption *vs* time

Zn1–Zn1 ⁱ	3.0880 (4)	Zn1–N1	2.0090 (17)
Zn1–O1	2.0331 (14)	Zn1–O3 ⁱⁱⁱ	2.0384 (14)
Zn1–O4 ⁱⁱ	2.0500 (15)	Zn1–O2 ⁱ	2.0508 (14)
O1–Zn1–Zn1 ⁱ	83.99 (5)	N1–Zn1–O4 ⁱⁱ	100.08 (7)
O1–Zn1–O4 ⁱⁱ	85.33 (7)	N1–Zn1–O3 ⁱⁱⁱ	104.78 (7)
O1–Zn1–O3 ⁱⁱⁱ	87.52 (7)	N1–Zn1–O2 ⁱ	99.55 (7)
O1–Zn1–O2 ⁱ	154.92 (7)	O3 ⁱⁱⁱ –Zn1–Zn1 ⁱ	74.07 (5)
O4 ⁱⁱ –Zn1–Zn1 ⁱ	81.50 (5)	O3 ⁱⁱⁱ –Zn1–O4 ⁱⁱ	155.12 (7)
$O4^{ii}$ –Zn1– $O2^{i}$	86.10 (7)	$O3^{iii}$ –Zn1– $O2^{i}$	90.45 (7)
N1–Zn1–Zn1 ⁱ	170.80 (5)	$O2^i$ –Zn1–Zn1 ⁱ	71.44 (5)
N1–Zn1–O1	105.14 (7)		

Table S1. Selected bond distance (Å) and angle (°) data for 1 $\,$

Symmetry codes: (i) -x+3/2, $-y+\frac{1}{2}$, -z+2; (ii) x, -y+1, $z+\frac{1}{2}$; (iii) -x+3/2, $y-\frac{1}{2}$, -z+3/2; (iv) x, -y+1, $z-\frac{1}{2}$; (v) -x+1, -y+1, -z+1; (vi) -x+3/2, $y+\frac{1}{2}$, -z+3/2; (vii) -x+1, y, -z+3/2.

Table S2. Selected bond distance (Å) and angle (°) data for ${\bf 2}$

Zn1–Zn1 ⁱ	3.0826 (7)	Zn1–O1	2.036 (2)
Zn1–O4 ⁱⁱ	2.040 (3)	Zn1–O2 ⁱ	2.044 (3)
Zn1–O3 ⁱⁱⁱ	2.059 (2)	Zn1–N1	2.007 (3)
$O4^{ii}$ –Zn1–Zn1 ⁱ	84.56 (8)	O1–Zn1–O2 ⁱ	155.13 (12)
O4 ⁱⁱ –Zn1–O3 ⁱⁱⁱ	155.19 (12)	$O2^i$ –Zn1–Zn1 ⁱ	81.07 (8)
$O4^{ii}$ –Zn1– $O2^{i}$	85.83 (14)	N1–Zn1–Zn1 ⁱ	170.83 (10)
$O3^{iii}$ –Zn1–Zn1 ⁱ	71.09 (8)	N1–Zn1–O4 ⁱⁱ	104.61 (13)
O1–Zn1–Zn1 ⁱ	74.52 (8)	N1–Zn1–O3 ⁱⁱⁱ	99.77 (12)
O1–Zn1–O4 ⁱⁱ	87.18 (13)	N1–Zn1–O1	105.56 (13)
O1–Zn1–O3 ⁱⁱⁱ	90.73 (12)	N1–Zn1–O2 ⁱ	99.30 (13)
O2 ⁱ –Zn1–O3 ⁱⁱⁱ	85.77 (13)		

Symmetry codes: (i) -x+3/2, -y+3/2, -z+1; (ii) -x+3/2, $y+\frac{1}{2}$, -z+3/2; (iii) x, -y+1, $z-\frac{1}{2}$; (iv) -x+3/2, $y-\frac{1}{2}$, -z+3/2; (v) x, -y+1, $z+\frac{1}{2}$; (vi) -x+1, -y+1, -z+1; (vii) -x+2, y, -z+3/2.

Zn1–Zn1 ⁱ	3.0844 (19)	Zn1–N2	2.007 (8)
Zn1–O1	2.047 (6)	I1–I1 ^{vii}	2.54 (2)
Zn1–O3 ⁱⁱ	2.047 (6)	I1–I2	2.83 (3)
Zn1-O2 ⁱ	2.050 (6)	I2–I2 ^{viii}	2.60 (3)
Zn1–O4 ⁱⁱⁱ	2.051 (6)		
O1–Zn1–O2 ⁱ	154.9 (3)	$O2^{i}$ –Zn1–O4 ⁱⁱⁱ	86.0 (3)
O1–Zn1–O4 ⁱⁱⁱ	85.4 (3)	N2–Zn1–O1	105.4 (3)
O3 ⁱⁱ –Zn1–O1	87.4 (3)	N2–Zn1–O3 ⁱⁱ	105.1 (3)
$O3^{ii}$ –Zn1– $O2^{i}$	90.7 (3)	N2–Zn1–O2 ⁱ	99.2 (3)
O3 ⁱⁱ –Zn1–O4 ⁱⁱⁱ	155.2 (3)	N2–Zn1–O4 ⁱⁱⁱ	99.7 (3)

Table S3. Selected bond distance (Å) and angle (°) data for $2a@I_2$

Symmetry codes: (i) -x+1/2, -y+3/2, -z; (ii) -x+1/2, y+1/2, -z+1/2; (iii) x, -y+1, z-1/2; (iv) -x+1/2, y-1/2, -z+1/2; (vii) -x+1, -y+2, -z+1; (viii) -x+1, y, -z+1/2.

Compounds	I ₂ uptake capacity (per formula unit)	Reference
TMU-16-NH ₂	0.6	1
TMU-15	3	2
MIL-101-NH ₂ , CAU-1	0.71, 0.31	3
Compound 1	1.5	4
MOF 1'	4.2	5
JLU-Liu14	0.5	6
$\{[CuII(btz)] \cdot 0.5H_2O\}_n$	0.5	7
$[Zn_3(DLlac)_2(pybz)_2]_n$	3	8
ZIF-8	1.25	9
HKUST-1	1.75	10
Azo-bridged porphyrin–phthalocyanine	2.90	11
$\{[Zn_2(\mu_4-ao_2btc)(\mu-pbix)_2]\cdot 2DMF\cdot 8H_2O\}_n$	1.47	12
$\{[Co_2(\mu_8-abtc)(betib)]\}_n$	1.975	13
$\left[\operatorname{Cd}(\mathrm{L1})_2(\operatorname{ClO}_4)_2\right]$	2	14
$\{[Zn_2(\mu_8-abtc)(betib)]\}_n$	1.975	This work

Table S4. Comparison of the I_2 uptake capacity (per formula unit) in selected iodine containing compounds

Table S5. Comparison of the iodine release rate of the selected compounds based on the calibration curve of standard iodine

Compounds	Release rate/ mol L ⁻¹ min ⁻¹ (×10 ⁻⁶)	Ref.
$Cu_2(H_2O)_2(Cu_4I_4)_2(INA)_4(DABCO)_2 \cdot 2DMA$	0.288 (0.0875 mg /120 min)	15
JLU-Liu14b	0.5	6
$[(Cu_2I)Cu_2L_2(H_2O)_2]_2^{2+} \cdot 2NO_3^{-} \cdot 5DMF$	5.2	16
[Cu ₄ I ₃ (DABCO) ₂]I ₃	1.4	17
JLU-Liu32	2.3	18
JLU-31	0.85	18
{[Zn ₂ (µ ₈ -abtc)(betib)]}	0.595	This work

Fig. S1. (a) The coordination environments of the Zn(II) ions in the paddle-wheel cluster **(b)** View of the 3D framework of $[Zn_2(abtc)]$ (1,4-betib ligands removed for clarity) **(c)** Space-filling mode of 3D structure in **1** and **2** along the c-axis

Fig. S2. PXRD patterns of simulated and as-synthesized compounds

Fig. S3. PXRD patterns of compound 2 before and after fully activation at 140°C

Fig. S4. N_2 adsorption-desorption isotherms of $\mathbf{2a}$ at 77 K

Fig. S5. The photographs of I_2 adsorption of 2a in cyclohexane with time

Fig. S6. The color change of 2a after exposure to I_2 vapor at 75°C

Fig. S7. (a) IR spectra of 2a before and after I₂ adsorption in solution and vapor phase (b)
PXRD patterns of 2a, 2a@I₂(solvent), 2a@I₂(vapor) and 2a@I₂(desorption)

Fig. S8. (a) I_2 release of $2a@I_2$ (10 mg) into methanol (10 mL) with time (b) the curve of I_2 desorption vs time

Notes and references

- 1. V. Safarifard and A. Morsali, *CrystEngComm*, 2014, 16, 8660-8663.
- 2. L. Hashemi and A. Morsali, *CrystEngComm*, 2014, **16**, 4955-4958.
- 3. C. Falaise, C. Volkringer, J. Facqueur, T. Bousquet, L. Gasnot and T. Loiseau, *Chem. Commun.*, 2013, **49**, 10320-10322.
- Y. Q. Hu, M. Q. Li, Y. Wang, T. Zhang, P. Q. Liao, Z. Zheng, X. M. Chen and Y. Z. Zheng, *Chem. Eur. J.*, 2017, 23, 8409-8413.
- 5. A. K. Chaudhari, S. Mukherjee, S. S. Nagarkar, B. Joarder and S. K. Ghosh, *CrystEngComm*, 2013, **15**, 9465-9471.
- J. Wang, J. Luo, X. Luo, J. Zhao, D.-S. Li, G. Li, Q. Huo and Y. Liu, *Cryst. Growth Des.*, 2015, 15, 915-920.
- P. Cui, L. Ren, Z. Chen, H. Hu, B. Zhao, W. Shi and P. Cheng, *Inorg. Chem.*, 2012, 51, 2303-2310.
- M.-H. Zeng, Q.-X. Wang, Y.-X. Tan, S. Hu, H.-X. Zhao, L.-S. Long and M. Kurmoo, J. Am. Chem. Soc., 2010, 132, 2561-2563.
- D. F. Sava, M. A. Rodriguez, K. W. Chapman, P. J. Chupas, J. A. Greathouse, P. S. Crozier and T. M. Nenoff, *J. Am. Chem. Soc.*, 2011, **133**, 12398-12401.

- D. F. Sava, K. W. Chapman, M. A. Rodriguez, J. A. Greathouse, P. S. Crozier, H. Zhao,
 P. J. Chupas and T. M. Nenoff, *Chem. Mater.*, 2013, 25, 2591-2596.
- 11. H. Li, X. Ding and B. H. Han, *Chem. Eur. J.*, 2016, **22**, 11863-11868.
- 12. M. Arıcı, O. Z. Yeşilel, M. Tas and H. Demiral, *Inorg. Chem.*, 2015, 54, 11283-11291.
- M. Arici, O. Z. Yeşilel, M. Taş and H. Demiral, *Cryst. Growth Des.*, 2017, 17, 2654-2659.
- 14. Q.-K. Liu, J.-P. Ma and Y.-B. Dong, Chem. Commun., 2011, 47, 7185-7187.
- 15. J.-H. Liu, J. Zhang, D. Zhao, L.-D. Lin, Y.-Q. Sun, X.-X. Li and S.-T. Zheng, *CrystEngComm*, 2020, **22**, 821-828.
- J. Yuan, J. Li, L. Kan, L. Zou, J. Zhao, D.-S. Li, G. Li, L. Zhang and Y. Liu, C Cryst. Growth Des., 2018, 18, 5449-5455.
- B. Xin, G. Zeng, L. Gao, Y. Li, S. Xing, J. Hua, G. Li, Z. Shi and S. Feng, *Dalton Trans.*, 2013, 42, 7562-7568.
- S. Yao, X. Sun, B. Liu, R. Krishna, G. Li, Q. Huo and Y. Liu, *JJ. Mater. Chem. A*, 2016, 4, 15081-15087.