Supplementary data for

Engineering Z-scheme TiO₂-OV-BiOCl via oxygen vacancy for

photocatalytic degradation of imidacloprid

Bin Yang ^a, Jiliang Zheng ^b, Wei Li^c, Rongjie Wang ^a, Danya Li^a, Xuhong Guo ^a, Raul D.

Rodriguez^d, Xin Jia^{a*}

^a School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region, Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, People's Republic of China.

^b XINJIANG XIN LIAN XIN ENERGY CHEMICAL CO.,LDT.

^c Chair of Macromolecular Chemistry, Faculty of Chemistry and Food Chemistry, School of Science, Technische Universitat Dresden, 01069 Dresden, Germany.

^d Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia.

*Corresponding author. jiaxin@shzu.edu.cn (Xin Jia)

The calculation of intensity-average lifetime of samples:

In this work, the time-resolved photoluminescence (TRPL) decay spectra was applied to study the effective transfer of photo- generated electrons intuitively. As shown in Fig. 5(d), all of the TRPL spectra is consistent with a multi-exponential decay process. And their decay dynamics can be obtained through fitting to a biexponential function [1,2]:

$$I(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$$
(1)

where I(t) indicates the PL intensity, A_1 and A_2 are used to represent the amplitude (or weighting factors). the τ_1 and τ_2 represent the corresponding lifetime. The average lifetime (τ_m) is often used to evaluate carrier separation efficiency of photogenerated charges, and the τ_m was calculated according to the following equation:

$$\tau_{\rm m} = (A_1 \tau_1^2 + A_2 \tau_2^2) / (A_1 \tau_1 + A_2 \tau_2)$$
⁽²⁾

The short lifetime component (τ_m) stems from the nonradiative recombination of the τ_1 photogenerated electrons with the surface defects. And, the long lifetime component (τ_2) is derived from the interband recombination of the free-excitons [3]. The experimental decay profiles of TiO₂-OV-BiOCI samples are listed in Table. S1. For TiO₂-OV-BiOCI, the two exponential constants (τ_1 and τ_2) are 2.207 ns and 2.261 ns, which are longer than that of TiO₂/BiOCI (τ_1 =3.779 ns and τ_2 = 8.059 ns) and BiOCI (τ_1 =2.207 ns and τ_2 = 0.245 ns). Therefore, TiO₂-OV-BiOCI possess a longer average lifetime (τ_m = 5.83 ns) than that of TiO₂/BiOCI (τ_m = 4.76 ns) and BiOCI (τ_m = 4.33 ns).

Sample	A ₁	τ ₁ (ns)	A ₂	τ ₂ (ns)	τ _{ave} (ns)
TiO ₂ -OV-BiOCl	0.6348	5.978	0.276	2.261	5.83
TiO₂/BiOCl	0.624	3.799	0.803	8.050	4.76
BiOCI	0.363	2.207	0.276	6.245	4.33

Table S1. The fitted parameters of the TRPL decay profiles.

Fig. S1. The prepared $TiO_2/BiOCI$ using F127 as the surfactant in other solvents (a) and in the

methanol solvent using other surfactants (b).

Fig. S2. SEM images of TiO_2 -OV-BiOCl (a, b) and TiO_2 /BiOCl (c, d); HRTEM images of TiO_2 -OV-BiOCl (e-f).

Fig. S3. The survey spectra of TiO_2 -OV-BiOCl (a); The BET of prepared TiO_2 /BiOCl and TiO_2 -OV-BiOCl (b).

Fig. S4. Photocatalystic degradation of IMD by TiO_2 -OV-BiOCl under different the additive amount of titanium trichloride solution (a), solvent systems (b) and types of surfactants (c); The change in colour of TiO_2 -OV-BiOCl and BiOCl (d) before and after illumination under simulated sunlight.

Fig. S5. (a) HPLC graph of IMD and by-products within 35 minutes retention times in IMD undergoing photocatalytic degradation (a) and photo-degradation (b) at varies reaction time; (c) HPLC graph of IMD and by-products (d) undergoing photocatalytic degradation over TiO_{2^-} OV-BiOCl and photo-degradation by simulated sunlight at varies reaction time.

Fig. S6. The iron spectra at different retention time of photocatalytic degradation for IMD under irradiation at 40 min.

Reference:

[1] L. Zhang, C. Niu, X. Zhao, C. Liang, H. Guo, G. Zeng, ACS Appl. Mater. Inter., 2018, 46 (10)
 39723-39734.

[2] H. Gao, R. Cao, X. Xu, S. Zhang, Y. Huang, H. Yang, X. Deng, J. Li, *Appl. Catal. B: Environ.*, 2019, 245 399-409.

[3] X. Wang, C. Liow, A. Bisht, X. Liu, T. C. Sum, X. Chen, S. Li, *Adv. Mater.*, 2015, 27, 2207-2214.