Electronic Supplementary Information (ESI)

Development of novel ruthenium(II)-arene complexes displaying potent anticancer effects in glioblastoma cells

Priyaranjan Kumar,^a Indranil Mondal,^b Ritu Kulshreshtha,^b and Ashis K. Patra^{*,a}

Author address: ^a Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India

^b Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India

Supporting information contents	<u>Page</u>
Figure S1. ESI–MS analysis of complexes 1 and 2.	3
Figure S2. Solid-state FTIR overlay (in KBr pellets) for complexes 1 and 2.	4
Figure S3. ¹ H NMR of complex 1.	5
Figure S4. ¹³ C NMR of complex 1.	6
Figure S5. ¹ H NMR of complex 2.	7
Figure S6. ¹³ C NMR of complex 2.	8
Figure S7. An ORTEP view presentation of ligand (L2) and unit cell diagram.	9
Figure S8. Unit cell diagram of complexes 1 and 2.	10
Table S1. The crystallographic refinement parameters for L2 and complexes 1 and2.	11
Table S2. The selected bond lengths and bond angles for the complexes 1 and 2.	12-13
Figure S9. The dihedral angles in ligand L2 and complexes 1 and 2.	14
Figure S10. Intermolecular π - π stacking interactions from X-ray diffraction.	15
Figure S11. Aquation and kinetics of complex 2 in the buffer.	16
Figure S12. Solvation and kinetics of complexes 1 and 2 in DMF.	17
Figure S13. Time-dependent fluorescence changes of complex 2 in the buffer.	18
Table S3. The kinetics of photoreactivity of complexes 1 and 2.	18
Figure S14. Calf-thymus (CT) DNA binding studies of complex 2.	19
Figure S15. Ethidium bromide displacement assay of complex 2.	20
Figure S16. Circular dichroism study of CT-DNA binding of complexes 1 and 2.	20
Figure S17. Fluorescence emission quenching of HSA upon complex 2 additions.	21
Figure S18. Synchronous fluorescence measurement of HSA upon complex 2 additions.	21

Figure S1. The positive ion mode ESI-MS analysis of the complexes (a) **1** showed [M-Cl]⁺ and (b) **2** showed [M-Cl]⁺ molecular ion peaks corresponding to the molecular mass M. Inset: The overlay of the theoretical and experimental isotopic distribution patterns of the molecular ions.

Figure S2. An overlay of the solid-state FTIR spectra of complexes 1 and 2 in KBr pellets.

Figure S3. ¹H-NMR spectra of complex [Ru(η^6 -*p*-cymene)(L1)Cl] (1) in CDCl₃ (referenced with CDCl₃ signal at 7.26 ppm) at 298 K.

Figure S4. ¹³C NMR spectra of [Ru(η^6 -*p*-cymene)(L1)Cl] (1) in CDCl₃ at 298 K.

Figure S5. ¹H NMR spectra of complex [Ru(η^6 -*p*-cymene)(L2)Cl] (2) in CDCl₃ (referenced with CDCl₃ signal at 7.26 ppm) at 298 K.

Figure S6. ¹³C NMR spectra of [Ru(η^6 -p-cymene)(L2)Cl] (2) in CDCl₃ at 298 K.

Figure S7. (a) An ORTEP view of the ligand L2•H₂O with the atom numbering scheme. (b) Unit cell of L•H₂O showing 8 molecules. The hydrogen atoms were removed for clarity.

Figure S8. Unit cell of complexes **1** and **2** showing 8 and 4 molecules in respective unit cells. The hydrogen atoms were removed for clarity in the presentation.

Table S1. Selected crystallographic data and structure refinement parameters for the L2 and complexes 1 and2.

Parameters	L2	[Ru(n^6 -n-cymene)(L1)Cl1(1)	$[R_{11}(n^6-n-cymene)(L_2)C]](2)$
Empirical formula	C_{40} H ₃₀ N ₄ O ₃	$\frac{1}{C_{26}H_{25}CIN_2OR_{11}}$	$\frac{1}{C_{30}H_{27}CIN_2ORu}$
M _r	614 68		
amustal system	Manaalinia	518.00	568.06
crystal system			
space group	C2/C	C2/c	$P2_{1}/c$
<i>a</i> (A)	32.1158(18)	39.725(2)	20.1972(12)
<i>b</i> (A)	4.7986(3)	16.7767(9)	17.0661(9)
<i>c</i> (Å)	22.4568(14)	7.7208(4)	7.6153(4)
α (deg)	90	90	90
β (deg)	122.361(3)	90.621(2)	99.273(2)
$\gamma(\text{deg})$	90	90	90
Volume (Å ³)	2923.3(3)	5145.2(5)	2590.6(2)
Ζ	4	8	4
D_x (Mg m ⁻³)	1.397	1.337	1.456
$\mu (\mathrm{mm}^{-1})$	0.090	0.731	0.734
F(000)	1288.0	2112.0	1160.0
<i>T(</i> K)	273.15	273.15	273.15
2θ range for data	5.188 to 50.098	5.272 to 56.728	4.774 to 56.726
collection(deg)			
Limiting indices	$-38 \le h \le 38$,	$-53 \le h \le 48,$	$-26 \le h \le 26$,
_	$-5 \le k \le 5,$	$-22 \le k \le 22,$	$-22 \le k \le 22,$
	$-26 \le l \le 26$	$-10 \le l \le 10$	$-10 \le 1 \le 10$
Reflections collected	16548	25595	25590
unique reflections	2593	6427	6456
R(int)	0.0628	0.0916	0.0804
T _{max} / T _{min}	0.746/0.631	0.896/0.864	0.746/0.655
Data/restraints/param	2593/0/214	6427/0/283	6456/0/319
eters			
GOF on F^2	1.031	1.028	1.013
R_1^a and wR_2^b	R1 = 0.0452, wR2 =	R1 = 0.0597, wR2 = 0.1223	R1 = 0.0536, wR2 = 0.1025
$[I \ge 2\sigma(I)]$	0.0964		
R_1 and wR_2 (all data)	R1 = 0.0792, wR2 =	R1 = 0.1057, wR2 = 0.1369	R1 = 0.0932, wR2 = 0.1136
	0.1092		
Largest diff. peak/	0.18/-0.27	1.39/-0.64	1.10/-0.54
hole $(e.A^{-3})$			
CCDC deposition	2006009	2006007	2006008
serial number			
${}^{a}R_{1} = \Sigma F_{o} - F_{c} / \Sigma F_{o} ; {}^{b}wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}] \}^{1/2}. \text{ Goodness-of-fit (GOF)} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2} / (n-p)] \}^{1/2},$			
where $n =$ number of data and $p =$ number of parameters refined			

Bond lengths (Å) (1)		Bond lengths (Å) (2)	
Ru1-Cl1	2.4285(10)	Ru1-Cl1	2.4243(9)
Ru1-O1	2.078(3)	Ru1-O1	2.059(2)
Ru1-N1	2.097(4)	Ru1-N1	2.096(3)
Ru1-C20	2.185(4)	Ru1-C27	2.194(4)
Ru1-C18	2.210(4)	Ru1-C26	2.171(3)
Ru1-C22	2.175(4)	Ru1-C22	2.205(3)
Ru1-C23	2.184(4)	Ru1-C23	2.193(3)
Ru1-C19	2.192(4)	Ru1-C25	2.197(3)
Ru1-C21	2.209(4)	Ru1-C24	2.172(3)
Bond Angles (deg)		Bond Angles (deg)	
O1-Ru1-Cl1	85.55(8)	O1-Ru1-Cl1	84.86(7)
O1-Ru1-N1	87.92(13)	O1-Ru1-N1	86.60(10)
O1-Ru1-C20	128.23(14)	O1-Ru1-C27	106.74(12)
O1-Ru1-C18	140.77(14)	O1-Ru1-C26	86.56(11)
O1-Ru1-C22	85.73(14)	O1-Ru1-C22	142.99(12)
O1-Ru1-C23	104.78(14)	O1-Ru1-C23	163.05(11)
O1-Ru1-C19	163.59(14)	O1-Ru1-C25	94.67(11)
O1-Ru1-C21	95.25(14)	O1-Ru1-C24	127.05(12)
N1-Ru1-Cl1	84.93(10)	N1-Ru1-Cl1	85.10(8)
N1-Ru1-C20	91.32(15)	N1-Ru1-C27	166.65(12)
N1-Ru1-C18	130.06(15)	N1-Ru1-C26	147.81(12)
N1-Ru1-C22	146.05(15)	N1-Ru1-C22	129.14(12)
N1-Ru1-C23	167.26(15)	N1-Ru1-C23	99.91(12)
N1-Ru1-C19	100.25(15)	N1-Ru1-C25	111.56(12)
N1-Ru1-C21	110.02(15)	N1-Ru1-C24	92.02(12)
C20-Ru1-Cl1	145.92(12)	C27-Ru1-Cl1	95.39(10)

 Table S2 Selected bond length and bond angle parameter for the complexes 1 and 2.

C20-Ru1-C18	68.49(16)	C27-Ru1-C22	37.69(13)
C20-Ru1-C19	38.27(16)	C27-Ru1-C25	68.71(14)
C20-Ru1-C21	37.60(15)	C26-Ru1-Cl1	125.48(10)
C18-Ru1-Cl1	88.26(11)	C26-Ru1-C27	37.50(13)
C22-Ru1-Cl1	127.62(11)	C26-Ru1-C22	67.91(13)
C22-Ru1-C20	67.34(16)	C26-Ru1-C23	79.59(13)
C22-Ru1-C18	67.90(16)	C26-Ru1-C25	37.99(13)
C22-Ru1-C23	37.27(15)	C26-Ru1-C24	67.70(13)
C22-Ru1-C19	79.54(16)	C22-Ru1-Cl1	88.71(9)
C22-Ru1-C21	37.88(15)	C23-Ru1-Cl1	111.14(9)
C23-Ru1-Cl1	96.89(11)	C23-Ru1-C27	67.42(13)
C23-Ru1-C20	80.08(16)	C23-Ru1-C22	37.48(13)
C23-Ru1-C18	37.78(15)	C23-Ru1-C25	68.39(13)
C23-Ru1-C19	67.21(16)	C25-Ru1-Cl1	163.30(10)
C23-Ru1-C21	68.42(16)	C25-Ru1-C22	81.62(13)
C19-Ru1-Cl1	109.18(11)	C24-Ru1-Cl1	147.81(10)
C19-Ru1-C18	37.23(15)	C24-Ru1-C27	80.44(13)
C19-Ru1-C21	68.62(15)	C24-Ru1-C22	68.43(13)
C21-Ru1-Cl1	165.04(12)	C24-Ru1-C23	37.82(13)
C21-Ru1-C18	81.66(15)	C24-Ru1-C25	37.85(13)

Figure S9. Representation of the dihedral angles (a) between the planes containing [C18 C20 C15 N2] and [C2 C10 C7 C5] atoms of L2 (b) between the planes carrying [N2 C14 C9 C11] and [C2 C6 C4] atoms of complex **1**, and (c) between the planes containing [N2 C18 C15 C13] and [C2 C10 C7 C5] atoms of complex **2**.

Figure S10. Intermolecular π - π stacking interaction between quinoline rings of the complexes (a) 1 and (b) 2.

Figure S11. (a) The changes in absorption spectral profile for the complex **2** (39 μ M) in 5 mM tris HCl-NaCl buffer (pH = 7.2)-DMF mixture (1: 1) at 298 K. Inset: Evolution of UV-visible difference spectra upon aquation of complex **2**. (b) Absorption traces at 379 nm and mono-exponential fit upon hydrolysis for complex **2**.

Figure S12. The changes in the absorption spectral profile of the complexes (a) $1 (39 \ \mu M)$ and (c) $2 (39 \ \mu M)$ in DMF. (b) The changes in absorbance at 325 nm (1) as a function of time with their mono-exponential fit. (d) The changes in absorbance at 324 nm (2) as a function of time with their mono-exponential fit.

Figure S13. The time-dependent changes in fluorescence spectral profile for the complex **2** (10 μ M) in 5 mM Tris HCl/NaCl buffer (pH = 7.2)-DMF mixture (200:1).

Table S3. The photochemical results of complexes 1 and 2 upon photo-irradiation of UV-A light ($\lambda_{exc} = 365$ nm and power = 6 W).

Complex	$^{a}K(s^{-1})$	^b t _{1/2} (min)
1	$(7.96\pm0.46) \times 10^{-4}$	14.51
2	$(6.79\pm0.59) \times 10^{-4}$	17.01

^aFirst-order rate constant of photochemical changes determined from monoexponential curve fitting with $R^2 = 0.99$ for both the complexes **1** and **2**. ^bHalf-lifetime for the photo-induced product formation.

Figure S14. The binding propensity of the complexes with CT-DNA. (a) The continuous decrease of absorbance of complex **2** (39 μ M) upon gradual addition of CT-DNA (0–15 μ M) in 5 mM Tris HCl-NaCl buffer (pH = 7.2)-DMF mixture (50: 1). (b) Determination of binding constant (K_b) of complex **2** with CT-DNA from the slope to intercept ratio of a linear fitted plot of [DNA] vs DNA/ ε_a - ε_f from equation (3).

Figure S15. The decrease of emission intensity of EthB (12.5 μ M) bound CT-DNA (10 μ M) upon addition of complex **2** (0–236 μ M), $\lambda_{ex} = 546$ nm, Ex and Em slit width = 10 nm.

Figure S16. An overlay of circular dichroism spectra of CT-DNA (225 μ M) and induced CD signals from the complexes 1 and 2.

Figure S17. The result of the binding of the complexes with protein HSA. (a) The quenching of emission intensity of HSA (2.4 μ M) in absence and in presence of increasing concentration complex 2 (0–4 μ M) in 0.8% DMF-5mM Tris-HCl/NaCl buffer (pH 7.2) mixture, $\lambda_{exc} = 295$ nm, $\lambda_{em} = 350$ nm, slit 10/5 nm.

Figure S18. The synchronous fluorescence measurement of HSA (2.4 μ M) upon addition of complex **2** (0–4 μ M) in 0.8% DMF-5mM Tris-HCl/NaCl buffer (pH 7.2) mixture at 298 K. (a) Spectral traces of the HSA upon titration with complex **2** for $\Delta \lambda = 15$ nm. (b) Spectral traces of the HSA upon titration with complex **2** for $\Delta \lambda = 60$ nm, Slit width for exc/em = 10/5 nm.