Supporting Information

Counter anions influence the relaxation dynamics of phenoxy-

bridged Dy₂ single molecule magnets

Shuting Liu,^{a,b} Jingjing Lu,^a Xiao-lei Li,^a Zhenhua Zhu^{a,c} and Jinkui Tang*^{a,b}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China ^bSchool of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China ^cUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

Corresponding Author: Jinkui Tang E-mail: tang@ciac.ac.cn

Compound	1	2	3	4
Formula	$C_{53}H_{60}Cl_2Dy_2N_{12}O_{15}$	$C_{55}H_{63}Dy_2N_{14}O_{21}$	$C_{57}H_{70}Cl_2Dy_2N_{12}O_{24}$	$C_{120}H_{133}Cl_2Dy_4F_{12}N_{24}O_{39}S_4\\$
Formula weight	1501.03	1581.19	1703.15	3612.64
Temperature/K	173.15	173.15	173.15	173.15
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_1/n$	P1
a/Å	14.434(5)	14.515(3)	14.0961(9)	15.7602(13)
b/Å	17.950(7)	18.063(4)	18.9669(12)	18.2693(15)
c/Å	26.051(9)	27.276(7)	26.3438(18)	24.804(2)
α/°	90	90	90	95.9670(10)
β/°	93.072(8)	92.250(5)	104.9210(10)	100.081(2)
γ/°	90	90	90	90.9640(10)
Volume/Å ³	6740(4)	7146(3)	6805.8(8)	6989.1(10)
Ζ	4	4	4	2
$\rho_{calc}/g \cdot cm^{-3}$	1.479	1.470	1.662	1.717
F(000)	2992	3164	3416	3606
Crystal size/mm ³	0.12×0.11×0.1	0.12×0.11×0.1	0.2×0.15×0.1	0.15×0.12×0.1
Reflns collected	41046	39282	26112	43444
Rint	0.0812	0.1037	0.0447	0.027
GOF on F ²	1.031	0.995	1.107	1.027
R1, wR2 [I>=2σ (I)]	0.0657, 0.1855	0.0586, 0.1368	0.0582, 0.1517	0.0400, 0.1099
R1, wR2 [all data]	0.0887, 0.2011	0.0932, 0.1544	0.0729, 0.1595	0.0479, 0.1168
CCDC number	2004686	2004687	2004688	2004689

 Table S1. Crystallographic Data and Structure Refinement for 1-4.

Table S2. CShM Values of 1-4.

central atom	coordination polyhedron	1	2	3	4
Dy(1)	Square antiprism (SAPR-8, D4d)	4.253	4.009	4.275	4.112
	Triangular dodecahedron (TDD-8, D2d)	3.447	3.499	3.844	3.895
Dy(2)	Biaugmented trigonal prism J50 (JBTPR-8, C2v)	4.839	4.762	4.793	4.934
	Biaugmented trigonal prism (BTPR-8, C2v)	3.952	3.76	3.943	4.157
	Snub diphenoid J84 (JSD-8, D2d)	5.684	5.775	5.823	5.872
	Square antiprism (SAPR-8, D4d)	4.335	4.361	4.26	4.592
	Triangular dodecahedron (TDD-8, D2d)	4.455	4.061	4.118	4.556
	Biaugmented trigonal prism J50 (JBTPR-8, C2v)	5.144	5.214	5.221	5.342
	Biaugmented trigonal prism (BTPR-8, C2v)	4.32	4.533	4.451	4.549
	Snub diphenoid J84 (JSD-8, D2d)	6.262	5.854	6.088	6.346

Figure S1. Temperature dependence of the $\chi_M T$ values at 1000 Oe for 1 (red), 2 (blue), 3 (green) and 4 (brown) with the x axis in log scale to highlight the low temperature magnetic properties.

Figure S2. Field dependence of magnetization for 1. Inset: *M* versus *H*/*T* plot for 1.

Figure S3. Field dependence of magnetization for 2. Inset: M versus H/T plot for 2.

Figure S4. Field dependence of magnetization for 3. Inset: *M* versus *H*/*T* plot for 3.

Figure S5. Field dependence of magnetization for 4. Inset: M versus H/T plot for 4.

Figure S6. Variable magnetic field magnetization measurement for 1 at 1.9 K.

Figure S7. Variable magnetic field magnetization measurement for 2 at 1.9 K.

Figure S8. Variable magnetic field magnetization measurement for 3 at 1.9 K.

Figure S9. Variable magnetic field magnetization measurement for 4 at 1.9 K.

Figure S10. Frequency dependence under zero dc field of the in-phase ac susceptibility component at indicated temperature for **1**.

Figure S11. Temperature dependence under zero dc field of the in-phase (top) and the out-of-phase (bottom) ac susceptibility component at indicated ac frequency for **1**.

Table S3. Parameters Gained From the Fitting of Relaxation Time (τ) Versus Temperature (T^{-1}) Plots for 1, 2 and 4. For 3, Parameters Gained From the e.q. (3).

compound	U_{eff}/K	τ_{θ}/s	$ au_{QTM}/s$	A / s ⁻¹ K ⁻¹	<i>C</i> /s ⁻¹ K ⁻ⁿ	n
1	45.1	4.97×10^{-7}	6.1×10^{-4}	/	$7.8 imes 10^{-6}$	9.0
2	44.2	4.14×10^{-6}	1.4×10^{-3}	258	0.34	5.4
3	1.3	2.79×10^{-5}	/	/	/	/
4	56.2	6.15×10^{-6}	2.0×10^{-3}	49	0.3	4.8

Figure S12. Temperature dependence under 500 (left) and 600 (right) Oe dc field of the in-phase (top) and the out-of-phase (bottom) ac susceptibility component at indicated ac frequency for **2** (left) and **4** (right).

Figure S13. Frequency dependence under 600 Oe dc field of the in-phase ac susceptibility component at indicated temperature for 2.

Figure S14. Frequency dependence under 500 Oe dc field of the in-phase ac susceptibility component at indicated temperature for 4.

Figure S15. χ'' versus ν plot at 1.9 K under various applied dc field for 4.

Figure S16. Temperature dependence under 500 (left), 700 (middle) and 1200 (right) Oe dc field of the in-phase (top) and the out-of-phase (bottom) ac susceptibility component at indicated ac frequency for **4**.

Figure S17. Frequency dependence under 500 (left), 700 (middle) and 1200 (right) Oe dc field of the in-phase ac susceptibility component at indicated temperature for **4**.

Figure S18. Frequency dependence under zero dc field of the out-of-phase ac susceptibility component at indicated temperature for **3**.

Figure S19. Field dependence of out-of-phase ac susceptibilities for 3 at 1.9 K, 997 Hz.

Figure S20. Temperature dependence under 0 (top) and 600 (bottom) Oe dc field of the in-phase (red) and the out-of-phase (blue) ac susceptibility component at 997 Hz for **3**.

Figure S21. Cole-Cole plot for 1 at 1.9-13 K under zero dc field. The solid lines stand

for the best fit using a generalized Debye model.

Figure S22. Cole-Cole plot for **2** at 1.9-11 K under 600 Oe applied dc field. The solid lines stand for the best fit using a generalized Debye model.

Figure S23. Cole-Cole plot for **4** at 1.9-13 K under 500 Oe applied dc field. The solid lines stand for the best fit using a generalized Debye model.