Computational descriptions

The crystallographic data of compound Na₃GdB₈O₁₅ from SC-XRD analysis were used for computational study without geometry optimization. The calculation (CASTEP code) employs pseudo-potentials to describe electron-ion interactions and uses a plane-wave basis set for electronic wave functions [1]. The Generalized Gradient Approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional was used for the potential exchange-correlation [2]. A plane-wave basis set energy cutoff was 820 eV within the norm-conserving pseudo-potential [3]. The total energy and the force convergence thresholds were 1.0×10^{-6} eV/atom and 0.05 eV/Å, respectively. The *k*point set meshes to define the number of integration points that will be used to integrate the wave function in reciprocal space were $4 \times 4 \times 2$ for calculating band structure and density of state. The rest parameters used in the calculations were set by the default values of the CASTEP code. Pseudo atomic calculations were performed for, Na- $2s^22s^63p^1$, Gd-4f⁹5s²5p⁶5d¹, B-2s²2p¹ and O-2s²2p⁴, respectively.

[1] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, M. C. Payne, First principles methods using CASTEP, Z. Krist-Cryst. Mater. 220 (2005) 567-570.

[2] Y. Zhang, J. Sun, J. P. Perdew, X. Wu, Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA, Phys. Rev. B 96 (2017) 035143-035158.
[3] V. Milman, K. Refson, S. J. Clark, C. J. Pickard, J. R. Yates, S. P. Gao, P. J. Hasnip, M. I. J. Probert, A. Perlov, M.D. Segall, Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation, J. Mol. Struc: Theochem. 954 (2010) 22-35.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Na1	0.6340 (3)	0.3864 (2)	0.22853 (12)	0.0231 (3)
Na2	0.0920 (3)	0.3120 (2)	0.10828 (10)	0.0209 (3)
Na3	0.7487 (2)	0.2624 (2)	0.52279 (11)	0.0211 (3)
Gd1	0.91893 (2)	0.24898 (2)	0.83231 (2)	0.00530 (6)
B1	0.3803 (6)	0.6358 (5)	-0.0011 (3)	0.0083 (6)
B2	0.7276 (6)	0.9418 (5)	0.0134 (3)	0.0084 (6)
В3	0.6116 (6)	0.7971 (5)	0.1727 (2)	0.0065 (6)
B4	0.6280 (6)	1.0168 (5)	0.3139 (3)	0.0081 (6)
B5	0.8947 (6)	0.8478 (5)	0.3410 (2)	0.0065 (6)
B6	0.7960 (6)	0.7174 (5)	0.5117 (3)	0.0079 (6)
B7	0.6848 (6)	0.8702 (5)	0.6430 (2)	0.0062 (6)
B8	0.8341 (6)	0.6091 (5)	0.6802 (3)	0.0084 (6)
01	0.8377 (4)	0.5874 (3)	0.57699 (16)	0.0101 (4)

Table S1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²) of $Na_3GdB_8O_{15}$.

O2	0.5574 (4)	1.1485 (3)	0.35225 (16)	0.0085 (4)
O3	0.8304 (4)	1.0075 (3)	0.36197 (15)	0.0079 (4)
O4	0.7826 (4)	0.9290 (3)	0.11684 (16)	0.0098 (4)
O5	0.5488 (4)	0.7775 (3)	-0.04565 (16)	0.0127 (5)
O6	0.8745 (4)	0.7215 (3)	0.42408 (15)	0.0087 (4)
07	0.7443 (4)	0.7204 (3)	0.24680 (15)	0.0065 (4)
08	0.1968 (4)	0.4940 (3)	-0.05969 (17)	0.0133 (5)
09	1.1442 (4)	0.9260 (3)	0.32523 (16)	0.0074 (4)
O10	0.7384 (4)	0.7327 (3)	0.71033 (15)	0.0084 (4)
011	0.6743 (4)	0.8204 (3)	0.53601 (15)	0.0077 (4)
O12	0.4083 (4)	0.6447 (3)	0.10459 (15)	0.0083 (4)
O13	0.9241 (4)	0.5126 (3)	0.74583 (16)	0.0109 (4)
014	0.5011 (4)	0.9045 (3)	0.22464 (16)	0.0090 (4)
O15	0.8404 (4)	1.1017 (3)	-0.02783 (16)	0.0117 (4)

Table S2. Atomic displacement parameters (Å $^2)$ of $Na_3GdB_8O_{15}.$

1 4010 1	52. 1 Romite dis	plucement put		1.u.30uD8013.		
	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Na1	0.0195 (7)	0.0154 (7)	0.0373 (9)	0.0063 (6)	0.0141 (6)	0.0102 (6)
Na2	0.0267 (8)	0.0196 (7)	0.0132 (7)	0.0076 (6)	0.0008 (6)	-0.0047 (5)
Na3	0.0158 (7)	0.0250 (8)	0.0220 (8)	0.0118 (6)	-0.0050 (6)	-0.0067 (6)
Gd1	0.00525 (8)	0.00582 (8)	0.00440 (8)	0.00185 (5)	0.00091 (5)	0.00051 (5)
B1	0.0097 (16)	0.0098 (16)	0.0071 (15)	0.0060 (13)	0.0010 (12)	0.0019 (12)
B2	0.0076 (15)	0.0114 (16)	0.0078 (16)	0.0053 (13)	0.0024 (12)	0.0009 (12)
В3	0.0062 (15)	0.0063 (15)	0.0057 (15)	0.0014 (12)	0.0008 (12)	-0.0019 (12)
B4	0.0092 (16)	0.0071 (15)	0.0081 (15)	0.0021 (13)	0.0045 (12)	0.0028 (12)
B5	0.0079 (15)	0.0074 (15)	0.0050 (15)	0.0043 (12)	0.0006 (12)	0.0000 (12)
B6	0.0079 (16)	0.0077 (15)	0.0078 (15)	0.0034 (13)	0.0002 (12)	0.0010 (12)
B7	0.0062 (15)	0.0070 (15)	0.0060 (15)	0.0032 (12)	0.0009 (12)	0.0003 (11)
B8	0.0092 (16)	0.0072 (15)	0.0091 (16)	0.0027 (13)	0.0035 (13)	0.0025 (12)
01	0.0162 (11)	0.0109 (10)	0.0067 (10)	0.0086 (9)	0.0034 (8)	0.0015 (8)
02	0.0050 (10)	0.0100 (10)	0.0117 (11)	0.0040 (8)	0.0025 (8)	-0.0001 (8)
O3	0.0066 (10)	0.0100 (10)	0.0076 (10)	0.0049 (8)	-0.0005 (8)	-0.0016 (8)
O4	0.0084 (10)	0.0117 (10)	0.0069 (10)	0.0014 (8)	0.0021 (8)	0.0016 (8)
05	0.0131 (11)	0.0119 (11)	0.0082 (11)	0.0003 (9)	0.0017 (9)	0.0001 (8)
06	0.0127 (11)	0.0107 (10)	0.0053 (10)	0.0071 (9)	0.0025 (8)	0.0023 (8)
O7	0.0072 (10)	0.0074 (10)	0.0050 (10)	0.0040 (8)	-0.0005 (8)	-0.0004 (8)
08	0.0113 (11)	0.0121 (11)	0.0109 (11)	-0.0001 (9)	0.0004 (9)	-0.0030 (8)
09	0.0050 (10)	0.0068 (10)	0.0110 (10)	0.0028 (8)	0.0022 (8)	-0.0008 (8)
O10	0.0115 (11)	0.0104 (10)	0.0066 (10)	0.0074 (9)	0.0027 (8)	0.0016 (8)
011	0.0085 (10)	0.0115 (10)	0.0054 (10)	0.0065 (8)	0.0011 (8)	0.0005 (8)
012	0.0064 (10)	0.0083 (10)	0.0076 (10)	0.0006 (8)	0.0005 (8)	0.0001 (8)
O13	0.0156 (11)	0.0132 (11)	0.0085 (10)	0.0095 (9)	0.0048 (9)	0.0048 (8)
O14	0.0067 (10)	0.0124 (11)	0.0084 (10)	0.0054 (9)	-0.0006 (8)	-0.0032 (8)
O15	0.0110 (11)	0.0121 (11)	0.0111 (11)	0.0031 (9)	0.0036 (9)	0.0049 (9)

Two-phase refinement	$Na_3GdB_8O_{15}$	GdBO ₃
Crystal system, space group	Triclinic, P-1	Hexagonal, P6 ₃ /mmc
Unit cell (Å, °)	a = 6.27955(16)	a = 3.83211(24)
	b = 7.53038(18)	c = 8.9002(9)
	c = 13.47030(30)	
	$\alpha = 90.5311(18)$	
	$\beta = 100.6295(19)$	
	$\gamma = 113.5014(14)$	
Cell volume	571.686(23)	113.189(17)
(Å ³)		
2θ-interval, °	10-75°	
Wt %	0.97512	0.024877
R _{wp} (%)	6.00	
<i>R</i> _p (%)	4.90	
χ^2	1.447	

Table S3. Two phase riveted refinement of Na₃GdB₈O₁₅ and GdBO₃.

Table S4. IQY and EQY of the $Na_3Gd_{0.98-y}Y_yCe_{0.02}B_8O_{15}$ phosphors.

$Na_3Gd_{0.98-y}Y_yB_8O_{15}:0.02Ce^{3+}$	IQY (%)	EQY (%)
y = 0	8.43	3.49
y = 0.1	11.26	4.76
y = 0.2	11.99	4.99
y = 0.3	12.58	5.09
y = 0.4	12.98	5.65
y = 0.5	10.61	5.20

Figure S1. Rietveld refinement of Na₃Gd_{0.98}Ce_{0.02}B₈O₁₅ powder

Figure S2. Rietveld refinement of powder XRD pat-terns of Na₃Gd_{0.98-y}Y_yCe_{0.02}B₈O₁₅: (a) y = 0.1, (b) y = 0.2, (c) y = 0.3, (d) y = 0.4, (e) y = 0.5. (f) Cell parameters versus Y content y

Figure S3. EDS analysis of $Na_3Gd_{0.58}Y_{0.4}Ce_{0.02}B_8O_{15}$

Figure S4. (a) IR spectrum of Na₃GdB₈O₁₅. (b) UV-Vis absorption spectrum of Na₃GdB₈O₁₅

Figure S5. UV–Vis absorption spectrum of $Na_3Gd_{1-x}Ce_xB_8O_{15}$ (x = 0, 0.01, 0.02)

Figure S6. Decay curves ($\lambda_{ex} = 365 \text{ nm}$, $\lambda_{em} = 412 \text{ nm}$) and fitting lifetimes of Na₃Gd_{1-x}Ce_xB₈O₁₅ ($x = 0.005 \sim 0.08$) phosphors

Figure S7. (a) Excitation profile of BaSO₄ and the PL spectra of the Na₃Gd_{0.58}Y_{0.4}Ce_{0.02}B₈O₁₅ phosphor collected by using an integrating sphere. (b) The internal and external quantum yields (QE) of Na₃Gd_{0.98-y}Y_yCe_{0.02}B₈O₁₅ (y = 0, 0.1, 0.2, 0.3, 0.4, 0.5)