Supporting Information

Site-Selective Halogenation on *meso*-Mesityl Substituents of 10,20-Dimesityl-5,15-Diazaporphyrins with An AuX₃/AgOTf Combination

Jean-François Longevial, Kazuya Miyagawa, and Hiroshi Shinokubo*

Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.

E-mail: hshino@chembio.nagoya-u.ac.jp

Table of Contents

Instrumentation and Materials			
Synthetic Procedure and Characterizations of Compounds			
NMR, MS, and UV-Vis Spectra of Compounds	S12		
X-ray Diffraction Analysis	S48		
Electrochemical Analysis			
Theoretical Calculations			
References	S52		

Instrumentation and Materials

¹H NMR (500 MHz), ¹³C NMR (126 MHz), and ¹⁹F NMR (470 MHz) spectra were recorded on a Bruker AVANCE III HD spectrometer. Chemical shifts were reported as the delta scale in ppm relative to CDCl₃ (δ = 7.26 ppm) for ¹H NMR, CDCl₃ (δ = 77.16 ppm) for ¹³C NMR, and hexafluorobenzene (δ = -162.9 ppm) for ¹⁹F NMR. UV/vis absorption spectra were recorded on a Shimadzu UV-2550 spectrometer. Emission spectra were recorded using a JASCO FP-6500 spectrometer, and absolute fluorescence quantum yields were measured by the photon-counting method using an integration sphere. High-resolution electrospray ionization time-of-flight (APCI-TOF) mass spectra were taken on a Bruker micrOTOF instrument. The progress of the reaction was monitored by MALDI-TOF-MS analysis on a Bruker autoflex TOF. 10,20-Dimesityl-5,15-diazaporphyrin **1H** and its nickel(II) complex **1Ni** were synthesized according to the literature.¹ Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Synthetic Procedure and Characterization of Compounds

Chlorination on the mesityl groups of diazaporphyrins 1H. A grinded powder of gold(III) trichloride (80 mg, 0.18 mmol, 1 equiv) and silver(I) triflate (280 mg, 1.1 mmol, 6 equiv) was added to a solution of 10,20-dimesityl-5,15-diazaporphyrin **1H** (100 mg, 0.18 mmol) in dichloroethane (12 mL). The color of the solution changed from purple to deep blue. The resulting mixture was heated to 85 °C. After stirring for 1 h, gold(III) trichloride (160 mg, 0.36 mmol, 2 equiv) was added. Again, another portion of gold(III) trichloride (160 mg, 0.36 mmol, 2 equiv) was added after 1 h. Then, a saturated solution of NaHCO₃ (12 mL) was added and the mixture was stirred for 15 min. Then, the organic layer was washed with water (3×10 mL), dried over Na₂SO₄, and evaporated to dryness. The crude product was purified by silica gel column chromatography (CH₂Cl₂ as an eluent) to afford 10-(3-chloro-2,4,6-trimethylphenyl)-5,15-diazaporphyrin **3H-Cl** in 40% yield (45 mg), respectively.

Bromination on the mesityl groups of diazaporphyrins 1H. A grinded powder of gold(III) tribromide (238 mg, 0.55 mmol, 3 equiv) and silver(I) triflate (280 mg, 1.1 mmol, 6 equiv) was added to a solution of 10,20-dimesityl-5,15-diazaporphyrin **1H** (100 mg, 0.18 mmol) in dichloroethane (12 mL). The color of the solution changed from purple to deep blue. The resulting mixture was heated to 85 °C for 3 h. Afterwards, a saturated solution of

NaHCO₃ (12 mL) was added and the mixture was stirred for 15 min. Then, the organic layer was washed with water (3×10 mL), dried over Na₂SO₄, and evaporated to dryness. The crude product was purified by silica gel column chromatography (CH₂Cl₂ as an eluent) to afford 10-(3-bromo-2,4,6-trimethylphenyl)-20-mesityl-5,15-diazaporphyrin **2H-Br** in 7 % yield (8 mg) and 10,20-di(3-bromo-2,4,6-trimethylphenyl)-5,15-diazaporphyrin **3H-Br** in 60% yield (77 mg), respectively.

10-(3-Chloro-2,4,6-trimethylphenyl)-20-mesityl-5,15-diazaporphyrin 2H-Cl. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.28 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 9.27 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.87 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.83 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 7.39 (s, 1H, H_{Ar-meso}), 7.31(s, 2H, H_{Ar-meso}), 2.72 (s, 3H, H_{p-Me}), 2.64 (s, 3H, H_{p-Me}), 1.95 (s, 3H, H_{o-Me}), 1.85 (s, 6H, H_{o-Me}), 1.80 (s, 3H, H_{o-Me}), -2.56 (bs, 2H, H_{NH}) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 139.4, 139.4, 138.8, 137.8, 137.6, 137.2, 135.6, 133.4, 133.0, 132.8, 129.6, 128.3, 121.5, 120.6, 21.9, 21.6, 21.4, 20.1 ppm. MS (APCI-TOF): cald for [M+H]⁺ C₃₆H₃₂ClN₆: 583.2371. Found *m*/*z* = 583.2387. UV-Vis (CH₂Cl₂) λ_{max} (ε): 393 (100120), 485 (3340), 508 (5560), 543 (24100), 579 (6720), 628 (32900).

10,20-Di(3-chloro-2,4,6-trimethylphenyl)-5,15-diazaporphyrin 3H-Cl. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.29 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.84 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 7.40 (s, 2H, H_{Ar-meso}), 2.72 (s, 6H, H_{p-Me}), 1.95 (s, 6H, H_{o-Me}), 1.80 (s, 6H, H_{o-Me}), -2.56 (bs, 2H, H_{NH}) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 137.8, 137.5, 137.2, 133.6, 132.8,

132.7, 132.2, 129.6, 120.7, 21.6, 21.4, 20.1 ppm. MS (APCI-TOF): calcd for $[M+H]^+$ C₃₆H₃₁Cl₂N₆: 617.1981. Found m/z = 617.1968. UV-Vis (CH₂Cl₂) λ_{max} (ε): 393 (88860), 485 (2980), 508 (4830), 543 (21550), 578 (5150), 628 (29760). Fluorescence (CH₂Cl₂, $\lambda_{ex} = 550$ nm): $\lambda_{em} = 635.5$ and 695.2 nm, $\Phi_{f} = 0.009$.

10-(3-Bromo-2,4,6-trimethylphenyl)-20-mesityl-5,15-diazaporphyrin 2H-Br. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.28 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 9.27 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.87 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.83 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 7.40 (s, 1H, H_{Ar-meso}), 7.32 (s, 2H, H_{Ar-meso}), 2.76 (s, 3H, H_{p-Me}), 2.64 (s, 3H, H_{p-Me}), 2.00 (s, 3H, H_{o-Me}), 1.85 (s, 6H, H_{o-Me}), 1.78 (s, 3H, H_{o-Me}), -2.56 (bs, 2H, H_{NH}) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 154.1, 148.1, 139.6, 139.4, 139.4, 139.3, 138.8, 138.5, 137.5, 135.6, 133.4, 133.0, 132.6, 131.0, 129.5, 129.0, 128.3, 125.8, 121.5, 120.8, 24.6, 23.4, 21.9, 21.6, 21.6 ppm. APCI-TOF-MS: calcd for [M+H]⁺ C₃₆H₃₂BrN₆: 627.1866. Found *m/z* = 627.1874. UV-Vis (CH₂Cl₂) λ_{max} (ε) 394 (109230), 486 (3700), 508 (6030), 543 (26070), 578 (6240), 628 (35900).

10,20-Di(3-bromo-2,4,6-trimethylphenyl)-5,15-diazaporphyrin 3H-Br. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.29 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.84 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 7.40 (s, 2H, H_{Ar-meso}), 2.76 (s, 6H, H_{p-Me}), 2.00 (s, 6H, H_{o-Me}), 1.78 (s, 6H, H_{o-Me}), – 2.56 (bs, 2H, H_{NH}) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 154.3, 148.3, 139.6, 139.6, 139.3, 138.5, 138.5, 137.4, 133.6, 133.6, 132.7, 132.7, 129.5, 125.8, 120.9, 24.6, 23.5, 21.7 ppm. APCI-TOF-MS: calcd for $[M+H]^+ C_{36}H_{31}Br_2N_6$: 705.0971. Found m/z = 705.0974. UV-Vis (CH₂Cl₂) λ_{max} (ε): 394 (103304), 486 (3420), 508 (5670), 543 (25100), 578 (5800), 628 (34750). Fluorescence (CH₂Cl₂, $\lambda_{ex} = 550$ nm): $\lambda_{em} = 636.4$ and 695.7 nm, $\Phi_f = 0.008$.

Bromination on the core of 10,20-diphenyl-5,15-diazaporphyrin 4. A grinded powder of gold(III) tribromide (52.5 mg, 0.12 mmol, 3 equiv) and silver(I) triflate (61.6 mg, 0.24 mmol, 6 equiv) was added to a solution of 10,20-diphenyl-5,15-diazaporphyrin 4 (18.6 mg, 0.04 mmol) in dichloroethane (3.0 mL). The color of the solution changed from purple to deep blue. The resulting mixture was heated to 85 °C for 3 h. Afterwards, a saturated solution of NaHCO₃ (12 mL) was added and the mixture was stirred for 15 min. Then, the organic layer was washed with water (3 × 10 mL), dried over Na₂SO₄, and evaporated to dryness. The crude product was purified by silica gel column chromatography (CH₂Cl₂ as an eluent) to afford 2-bromo-10,20-diphenyl-5,15-diazaporphyrin **5** in 9 % yield (2.0 mg).

3-Bromo-10,20-diphenyl-5,15-diazaporphyrin 5. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.38 (d, 1H, ³*J*_{H-H} = 4.5 Hz, H_{β-pyrr}), 9.30 (d, 1H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 9.09 (d, 1H, ³*J*_{H-H} = 4.0 Hz, H_{β-pyrr}), 9.05 (d, 1H, ³*J*_{H-H} = 4.5 Hz, H_{β-pyrr}), 9.02 (d, 1H, ³*J*_{H-H} = 4.5 Hz, H_{β-pyrr}), 8.91 (s, 1H, H_{β-pyrr}), 8.82 (d, 1H, ³*J*_{H-H} = 4.5 Hz, H_{β-pyrr}), 8.18–8.22 (m, 4H, H_{Ph}), 7.82–7.86 (m, 6H, H_{Ph}), -3.30 (bs, 2H, H_{NH}) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 139.2, 139.1, 136.2, 135.5, 135.4, 135.0, 134.8, 131.7, 131.6, 130.9, 130.2, 128.7, 128.6, 127.5,

127.4, 126.5, 122.7, 122.5 ppm. APCI-TOF-MS: calcd for $[M]^+ C_{30}H_{19}BrN_6$: 542.0849. Found m/z = 542.0834.

Suzuki–Miyaura coupling on the aryl substituents. In a narrow Schlenk tube, 10,20di(3-bromo-2,4,6-trimethylphenyl)-5,15-diazaporphyrin **3H-Br** (5.2 mg, 7.36 µmol) was charged. Then phenylboronic acid (3.6 mg, 29.5 µmol, 4 equiv), K₃PO₄ (12.5 mg, 58.8 µmol, 8 equiv), Pd₂(dba)₃•CHCl₃ (1 mg, 0.74 μmol, 10 mol%), and SPhos (1 mg, 1.47 μmol) were added, and the Schlenk tube was capped with a septum and sealed with electrical tape. The Schlenk tube was evacuated and back filled with nitrogen 3 times. Then, distilled toluene (1 mL) was added and the resulting mixture was stirred at 100 °C for 2 h and additional 12 h at 60 °C. The progress of the reaction was monitored by MALDI-TOF-MS analysis of the reaction mixture. The mixture was then cooled to room temperature, and CH₂Cl₂ (5 mL) and water (5 mL) were added. The organic layer was than washed two times with 1 M NaOH aqueous solution, dried over anhydrous Na₂SO₄, and evaporated to dryness. Finally, the residue was purified by silica-gel column chromatography ($CH_2Cl_2/AcOEt = 20/1$) to provide 10,20-di(3-phenyl-2,4,6-trimethylphenyl)-5,15-diazaporphyrin 8a as a purple solid in 95% yield.

10-(3-Phenyl-2,4,6-trimethylphenyl)-20-mesityl-5,15-diazaporphyrin 7. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.30 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 9.27 (d, 2H, ³*J*_{H-H} = 5.0 Hz,

H_{β-pyrr}), 8.96 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.86 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 7.51–7.35 (m, 5H, H_{Ph}), 7.31, (bs, 3H, H_{Ar-meso}), 2.64 (s, 3H, H_{Me}), 2.35 (s, 3H, H_{Me}), 1.87–1.83 (m, 9H, H_{Me}), 1.54 (s, 3H, H_{Me}), -2.53 (bs, 2H, H_{NH}) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 154.0, 147.9, 141.4, 139.9, 139.4, 139.4, 138.7, 138.4, 137.6, 136.9, 136.3, 135.7, 133.2, 132.9, 129.7, 128.7, 128.2, 126.9, 121.8, 121.3, 21.9, 21.9, 21.8, 21.6 ppm. APCI-TOF-MS: calcd for [M+H]⁺ C₄₂H₃₇N₆: 625.3074. Found *m*/*z* = 625.3091. UV-Vis (CH₂Cl₂) λ_{max} (*ε*): 395 (81830), 485 (2730), 508 (4470), 543 (19230), 578 (4620), 629 (26030).

10,20-Di(3-phenyl-2,4,6-trimethylphenyl)-5,15-diazaporphyrin 8a. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.30 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.96 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 7.51–7.34 (m, 12H, H_{Ph} and H_{Ar-meso}), 2.35 (s, 6H, H_{Me}), 1.88 (s, 3H, H_{Me}), 1.85 (s, 3H, H_{Me}), 1.56 (s, 3H, H_{Me}), 1.53 (s, 3H, H_{Me}), -2.52 (bs, 2H, H_{NH}) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 154.2, 148.3, 141.4, 139.9, 138.4, 138.4, 137.6, 137.5, 136.9, 136.3, 133.3, 132.9, 129.7, 128.7, 126.9, 121.8, 21.9, 21.9, 21.4, 20.5, 20.4 ppm. APCI-TOF-MS: calcd for [M+H]⁺ C₄₈H₄₁N₆: 701.3387. Found *m*/*z* = 701.3352. UV-Vis (CH₂Cl₂) λ_{max} (ε): 395 (81900), 486 (2680), 508 (4430), 544 (19560), 578 (4640), 629 (26830). Fluorescence (CH₂Cl₂, λ_{ex} = 550 nm): λ_{em} = 636.9 and 696.1 nm, Φ_{f} = 0.04.

10,20-Di(2,4,6-trimethyl-3-(1-naphthyl)phenyl)-5,15-diazaporphyrin 8b. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.34 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 9.31 (d, 2H, ³*J*_{H-H} = 5.0 Hz,

H_{β-pyrr}), 9.03 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 9.02 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 7.96–7.41 (m, 16H, H_{Naphtalene}; H_{Ar-meso}), 2.23 (s, 6H, H_{Me}), 1.92 (2s, 6H, H_{Me}), 1.44 (2s, 6H, H_{Me}), -2.52 (bs, 2H, H_{NH}) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 154.5, 148.0, 143.5, 138.8, 138.8, 138.6, 138.5, 138.1, 137.6, 136.4, 134.1, 133.3, 132.9, 132.3, 132.3, 131.0, 129.1, 129.0, 128.9, 128.7, 128.5, 127.6, 127.3, 126.6, 126.1, 126.0, 125.4, 125.4, 121.7, 22.0, 22.0, 21.9, 20.9, 20.9 ppm. APCI-TOF-MS: calcd for [M+H]⁺ C₅₆H₄₅N₆: 801.3700. Found *m/z* = 801.3669. UV-Vis (CH₂Cl₂) λ_{max} (ε): 284 (20500), 294 (19800), 396 (92760), 486 (3000), 508 (4900), 544 (22000), 578 (5200), 629 (30400). Fluorescence (CH₂Cl₂, $\lambda_{ex} = 550$ nm): $\lambda_{em} = 636.5$ and 696.1 nm, $\Phi_{f} = 0.03$.

10,20-Di(3-(4-trifluoromethyl)phenyl-2,4,6-trimethylphenyl)-5,15-diazaporphyrin 8c. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.24 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 9.87 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 7.70–7.68 (m, 4H, H_{Ph}), 7.51–7.49 (m, 4H, H_{Ph}), 7.37, (s, 2H, H_{Ar-meso}), 2.26 (s, 6H, H_{Me}), 1.81 (2s, 6H, H_{Me}), 1.44 (2s, 6H, H_{Me}), -2.60 (bs, 2H, H_{NH}) ppm. ¹⁹F NMR (470 MHz, CDCl₃, 298 K): δ –62.38 (s, CF₃) ppm. ¹³C NMR (125 MHz, CDCl₃, 298K):154.1, 148.3, 145.2, 139.1, 138.6, 137.2, 137.2, 136.7, 136.6, 133.4, 132.8, 130.2, 129.4 (q, *J* = 32.4 MHz), 129.0, 125.8, 124.4 (q, *J* = 272.7 MHz), 121.4, 21.9, 21.9, 21.4, 20.4, 20.4 ppm. APCI-TOF-MS: calcd for [M+H]⁺ C₅₀H₃₉F₆N₆: 837.3134. Found *m/z* = 837.3106. UV-Vis (CH₂Cl₂) λ_{max} (ε): 395 (94676), 486 (3000), 508 (5040), 543 (22480), 578 (5210), 629 (30730). Fluorescence (CH₂Cl₂, λ_{ex} = 550 nm): λ_{em} = 634.9 and 695.7 nm, Φ_{f} = 0.05.

10,20-Di(3-(4-methoxy)phenyl-2,4,6-trimethylphenyl)-5,15-diazaporphyrin 8d. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.30 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.95 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 7.41 (s, 1H, H_{Ar-meso}), 7.40 (s, 1H, H_{Ar-meso}), 7.35–7.33 (m, 4H, H_{Ph}), 7.05– 7.02 (m, 4H, H_{Ph}), 3.86 (2s, 6H, H_{OMe}), 2.36 (s, 6H, H_{Me}), 1.88 (2s, 6H, H_{Me}), 1.56 (2s, 6H, H_{Me}), -2.52 (bs, 2H, H_{NH}) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 158.4, 153.9, 148.2, 139.4, 138.1, 138.1, 137.9, 137.9, 136.1, 133.4, 133.1, 132.8, 130.6, 128.5, 121.8, 114.0, 21.7, 21.7, 21.4, 20.4, 20.4 ppm. APCI-TOF-MS: calcd for [M+H]⁺ C₅₀H₄₅N₆O₂: 761.3598. Found *m*/*z* = 761.3562. UV-Vis (CH₂Cl₂) λ_{max} (ε): 284 (20500), 294 (19800), 396 (92760), 486 (3000), 508(4900), 544 (22000), 578 (5200), 629 (30400). Fluorescence (CH₂Cl₂, $\lambda_{ex} = 550$ nm): $\lambda_{em} = 637.1$ and 696.3 nm, $\Phi_{f} = 0.03$.

Synthesis of gold complexes 9 and 10. To a solution of 1H (8 mg, 14.5 μ mol, 1 equiv) in dichloroethane (12 mL) at room temperature under open air, gold(III) trichloride (10 mg, 44 μ mol, 3 equiv) was added. The color of the solution changed from purple to deep blue within a few seconds. Afterwards, the reaction mixture was stirred at 85 °C for 3 h. Then, the solvent was removed under reduced pressure and the crude product was directly purified by silica gel column chromatography (CH₂Cl₂). The less polar green product (first fraction) consisted of bisgold complex 10 (25% yield). The second fraction (grey color) consisted of

the monogold complex 9 (32% yield).

Gold Complex 9. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.79 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 9.26 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.93 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.78 (d, 2H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 7.33 (s, 4H, H_{Ar-meso}), 2.65 (s, 6H, H_{p-Me}), 1.84 (s, 12H, H_{o-Me}), -1.92 (bs, 2H, H_{NH}) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): 139.7, 139.1, 137.4, 136.2, 135.2, 135.1, 134.4, 137.7, 131.0, 129.9, 128.6, 126.7, 125.6, 21.9, 21.6 ppm. MALDI-TOF-MS: calcd for [M+H]⁺ C₃₆H₃₃AuCl₃N₆: 851.1420. Found *m*/*z* = 851.150. UV-Vis (CH₂Cl₂) λ_{max} (ε): 390 (80260), 566 (12960), 592 (8650), 641 (40810).

Gold Complex 10. ¹H NMR (500 MHz, CDCl₃, 298 K): δ 9.86 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 8.92 (d, 4H, ³*J*_{H-H} = 5.0 Hz, H_{β-pyrr}), 7.37 (s, 4H, H_{Ar-meso}), 2.66 (s, 6H, H_{p-Me}), 1.85 (s, 12H, H_{o-Me}), -1.67 (bs, 2H, H_{NH}) ppm. ¹³C NMR (125 MHz, CDCl₃, 298 K): 140.8, 139.0, 136.2, 133.5 (2C), 133.3, 130.0, 129.0, 128.6, 22.1, 21.7 ppm. MALDI-TOF-MS: calcd for [M+H]⁺ C₃₆H₃₂Au₂Cl₆N₆: 1153.0151. Found *m*/*z* = 1153.014. UV-Vis (CH₂Cl₂) λ_{max} (ε): 390 (116890), 581 (18950), 608 (11200), 660 (40800).

NMR, MS, and UV-Vis Spectra of Compounds

Figure S1. ¹H NMR spectrum of 2H-Cl in CDCl₃.

Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum of 2H-Cl in CDCl₃.

Figure S3. HR-MS spectrum of 2H-Cl.

Figure S4. UV-Vis spectrum of 2H-Cl in CH₂Cl₂.

Figure S5. ¹H NMR spectrum of 3H-Cl in CDCl₃.

Figure S6. ${}^{13}C{}^{1}H$ NMR spectrum of **3H-Cl** in CDCl₃.

Figure S7. APCI-TOF-MS spectrum of 3H-Cl.

Figure S8. UV-Vis spectrum of 3H-Cl in CH₂Cl₂.

Figure S9. ¹H NMR spectrum of 2H-Br in CDCl₃.

Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum of 2H-Br in CDCl₃.

Figure S11. APCI-TOF-MS spectrum of 2H-Br.

Figure S12. UV-Vis spectrum of 2H-Br in CH₂Cl₂.

Figure S13. ¹H NMR spectrum of **3H-Br** in CDCl₃.

Figure S14. ${}^{13}C{}^{1}H$ NMR spectrum of **3H-Br** in CDCl₃.

Figure S15. APCI-TOF-MS spectrum of 3H-Br.

Figure S16. UV-Vis spectrum of 3H-Br in CH₂Cl₂.

Figure S17. ¹H NMR spectrum of 7 in CDCl₃.

Figure S18. $^{13}C{^{1}H}$ NMR spectrum of 7 in CDCl₃.

Figure S19. APCI-TOF-MS spectrum of 7.

Figure S20. UV-Vis spectrum of 7 in CH₂Cl₂.

Figure S21. ¹H NMR spectrum of 8a in CDCl₃.

Figure S22. ¹H NMR spectrum of 8a in toluene- d_8 .

Figure S23. ${}^{13}C{}^{1}H$ NMR spectrum of 8a in CDCl₃.

Figure S24. APCI-TOF-MS spectrum of 8a.

Figure S25. UV-Vis spectrum of 8a in CH₂Cl₂.

Figure S26. ¹H NMR spectrum of 8b in CDCl₃.

Figure S27. ${}^{13}C{}^{1}H$ NMR spectrum of 8b in CDCl₃.

Figure S28. APCI-TOF-MS spectrum of 8b.

Figure S29. UV-Vis spectrum of 8b in CH₂Cl₂.

Figure S30. ¹H NMR spectrum of 8c in CDCl₃.

Figure S31. ¹³C{¹H} NMR spectrum of 8c in CDCl₃.

Figure S32. ${}^{19}F{}^{1}H$ NMR spectrum of 8c in CDCl₃.

Figure S33. APCI-TOF-MS spectrum of 8c.

Figure S34. UV-Vis spectrum of 8c in CH₂Cl₂.

Figure S35. ¹H NMR spectrum of 8d in CDCl₃.

Figure S36. ROESY spectrum of 8d in CDCl₃.

Figure S37. ${}^{13}C{}^{1}H$ NMR spectrum of 8d in CDCl₃.

Figure S38. APCI-TOF-MS spectrum of 8d.

Figure S39. UV-Vis spectrum of 8d in CH₂Cl₂.

Figure S40. ¹H NMR spectrum of 9 in CDCl₃.

Figure S41. ${}^{13}C{}^{1}H$ NMR spectrum of 9 in CDCl₃.

Figure S42. MALDI-TOF-MS spectrum of 9.

Figure S43. ¹H NMR spectrum of 10 in CDCl₃.

Figure S44. ${}^{13}C{}^{1}H$ NMR spectrum of 10 in CDCl₃.

Figure S45. MALDI-TOF-MS spectrum of 10.

X-ray Diffraction Analysis

X-ray data of **3H-Cl**, **9** and **10** were taken on a Rigaku CCD diffractometer (Saturn 724 with MicroMax-007) with Varimax Mo optics using graphite monochromated Mo-K α radiation ($\lambda = 0.71075$ Å). Crystallographic data for **3H-Cl**, **9** and **10** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-2014575, 2031076, and 2032240, respectively.

Compound	3H-Cl	9	10
Empirical Formula	$C_{18}H_{14}ClN_3$	$C_{18.5}H_{16.5}Au_{0.5}Cl_3N_3$	C _{18.5} H _{16.5} AuCl _{4.5} N ₃
Mw	307.77	485.68	637.34
Crystal System	monoclinic	monoclinic	monoclinic
Space Group	$P2_1/a$ (No. 14)	<i>C</i> 2/ <i>c</i> (No. 15)	$P2_1/a$ (No. 14)
a	7.8431(6) Å	26.5741(6) Å	14.5210(7) Å
b	23.827(2) Å	11.7909(2) Å	10.7731(5) Å
С	8.7706(7) Å	12.2513(3) Å	13.0542(5) Å
β	114.206(9)°	90.465(2)°	93.566(4)°
Volume	1494.9(2) Å ³	3838.60(14) Å ³	2038.20(16) Å ³
Ζ	4	8	4
Density (calcd.)	1.367 g/cm ³	1.681 g/cm^3	2.077 g/cm ³
Goodness-of-Fit	1.173	1.081	1.077
$R_1 \left[I > 2\sigma \left(I\right)\right]$	0.1135	0.0654	0.0608
wR_2 (all data)	0.2151	0.1942	0.1594
Temperature [K]	93(2)	93(2)	93(2)

Table S1. Crystal data and structure refinements for 3H-Cl, 9 and 10.

Electrochemical Analysis

Cyclic voltammograms and differential pulse voltammograms of **1H**, **7**, **8a**, **8b**, **8c**, and **8d** were recorded using an ALS electrochemical analyzer 612C. Measurements were performed in freshly distilled CH_2Cl_2 with tetrabutylammonium hexafluorophosphate as the electrolyte. A three-electrode system was used. The system consisted of a platinum working electrode, a platinum wire, and Ag/AgNO₃ as the reference electrode. The scan rate was 100 mVs⁻¹. The measurement was performed under nitrogen atmosphere. All potentials are referenced to the potential of ferrocene/ferrocenium cation couple.

Figure S46. Cyclic voltammograms of 1H, 7, 8a, 8b, 8c, and 8d in CH₂Cl₂.

Theoretical Calculations

All calculations were performed using the Gaussian 09 program.² All the structures were fully optimized without any symmetry restriction at the Becke's three-parameter hybrid exchange functional and the Lee–Yang–Parr correlation functional (B3LYP)³ and a basis set consisting of SDD⁴ for Ni and 6-31G(d) for the rest.

Figure S47. Molecular orbital diagrams of 1, 9, and 10 calculated the B3LYP/6-31G(d)+SDD level.

References

- Matano, Y.; Shibano, T.; Nakano, H.; Kimura, Y.; Imahori, H. *Inorg. Chem.* 2012, *51*, 12879–12890.
- Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- (a) Becke, A. D. *Phys. Rev. A* 1988, *38*, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* 1988, *37*, 785.
- 4) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866.