Supporting Information

The impact of metal coordination on the assembly of bis(indolyl)methanenaphthalene-diimide amphiphiles

Sinan Bayindir,^a Kwang Soo-Lee,^b Nurullah Saracoglu,*c and Jon R. Parquette*b

^aDepartment of Chemistry, Faculty of Sciences and Arts, Bingöl University, Bingöl, 12000, Turkey ^bDepartment of Chemistry and Biochemistry, The Ohio State University, 100 W. 18th Ave. Columbus,

Ohio 43210, USA

^cDepartment of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey

[*] Prof. N. Saracoglu, E-mail: nsarac@atauni.edu.tr [*] Prof. J.R Parquette, E-mail: parquette.1@osu.edu

1. Experimental Section	3
2. UV-Vis detection of cations	4
3. UV-Vis titration of the ligand with CuCl ₂	4
4. Job's plot measurement	6
5. Circular Dichroism (CD) Measurement	7
6. Atomic Force Microscopy (AFM) Measurement	7
7. Transmission Electron Microscopy (TEM) Measurement	8
8. Scanning Electron Microscopy (SEM) Measurement	10
9. Dynamic Light Scattering (DLS) Measurement	11
10. X-ray Photon Spectroscopy (XPS) Analysis	12
References	14
11. ¹ H- and ¹³ C NMR Spectrums	15
12. HRMS Spectra	36

Table of Contents

Scheme S1. Synthesis of H₂N-Boc-*L*-lysine-NDI-3,3'-bis(indolyl)methane (NDI-BIM 1) and N^{α} -Fmoc-*L*-lysine-NDI-3,3'-bis(indolyl)methane (NDI-BIM 2)

1. Experimental Section

1.1. 3,3'-((4-Nitrophenyl)methylene)bis(1*H***-indole) (BIM-NO**₂). This compound was prepared as described in literature¹. A solution of indole (500 mg, 4.27 mmol) in DCM (10 mL) were added 4-nitrobenzaldehyde (323 mg, 2.13 mmol) and Bi(NO₃)₃:5H₂O (0.01 mmol) as a catalyst. Reaction mixture was stirred magnetically at room temperature for 5 min. After completion of the reaction, the mixture was diluted with DCM (30 mL) and washed with water (2×50 mL), and organic phase was dried over Na₂SO₄. The crude product (782 mg) was purified by flash chromatography with 5% EtOAc/Hexane to give the product 3,3'-((4-nitrophenyl)methylene)bis(1*H*-indole) (**BIM-NO**₂, 780 mg, 99%, pale yellow solid, M.p.: 218-219°C (DCM/Hexane)).¹**H-NMR** (400 MHz, Acetone-*d*6): δ 10.11 (s, NH, 2H), 8.19-8.16 (m, =CH, AA' part of AA'BB' system, 2H), 7.67-7.65 (m, =CH, BB' part of AA'BB' system, 2H), 7.43 (d, *J* = 8.0 Hz, =CH, 2H), 7.37 (d, *J* = 8.0 Hz, =CH, 2H), 7.10 (d, *J* = 8.0 Hz, =CH, 2H), 6.96-6.91 (m, =CH, 4H), 6.12 (s, CH, 1H); ¹³C-NMR (100 MHz, Acetone-*d*6): δ 154.0, 147.3, 138.1, 130.6, 127.8, 124.9, 124.1, 122.4, 120.1, 119.6, 118.4, 112.4, 41.0, Data is accordance with literature¹. IR (KBr, cm⁻¹): 3423, 3165, 3051, 3028, 2951, 2887, 2419, 2255, 1779, 1605, 1593, 1510, 1458, 1337, 1179; **ESI-MS** calc. for C₂₃H₁₇N₃O₂: [M+H]⁺: 368.1399, found: 368.1554; TLC: R_f = 0.56 (EtOAc/hexane (5%), 254 nm).

1.2. 4-(Di(1*H***-indol-3-yl)methyl) aniline (3). Path B: 3,3'-((4-Nitrophenyl)methylene)bis(1***H***-indole) (BIM-NO**₂, 500 mg, 1.36 mmol) was dissolved in dry tetrahydrofuran (100 mL) and 10% palladium/carbon (200 mg) was added. The mixture was saturated with hydrogen gas and stirred for overnight. The Pd/C was removed by filtration and the solvent was evaporated and the crude product (430 mg) was purified by column chromatography with 10% EtOAc/Hexane as eluent to generate (3, orange solid, m.p.: 115-116 °C, 425 mg, 93%).

1.3. N^{α} -Boc-*L*-lysine-NDI monoimide (NDI- N^{α} -Boc-*L*-Lys). This compound was prepared as described in literature². 1,4,5,8-Naphthalenetetracarboxylic dianhydride (NDI, 500 mg, 1.86 mmol) was dissolved in DMF (20 mL) and N^{α} -(*tert*-butoxycarbonyl)-*L*-lysine (459 mg, 1.86 mmol) was added slowly at 90°C. The reaction mixture was degassed with a nitrogen stream and heated to 100°C. After 3 h, the solvent was removed by evaporation at reduced pressure, and the residue was purified by flash chromatography with 30% EtOAc/Hexane (Rf = 0.51 (254 nm) to give N^{α} -Boc-*L*-lysine-NDI monoimide (NDI- N^{α} -Boc-*L*-Lys, 750 mg, 81%, M.p.: 159-160°C (DCM)) as eluent affording a pale yellow solid.

1.4. N^{α} -Boc-*L*-lysine-NDI-3,3'-bis(indolyl)methane (BIM-NDI- N^{α} -Boc-*L*-lys). Path B: (N^{α} -Boc-*L*-lysine)-NDI monoimide (N^{α} -Boc-*L*-Lys-NDI, 736 mg, 1.48 mmol) was dissolved in DMF (10 mL) and solution of 4-(di(1*H*-indol-3-yl)methyl)aniline (7, 500 mg, 1.48 mmol) in DMF (5 mL) was added slowly via dropping funnel at 90°C. The reaction mixture was degassed with a nitrogen stream and heated to 100°C for 4h. DMF was removed by evaporation at reduced pressure, and the residue was purified by flash chromatography with 15% DCM/MeOH to give N^{α} -Boc-*L*-lysine-NDI-3,3'-bis(indolyl)methane (1.07 g, 88%) as eluent affording red solid.

1.5. (((9*H*-Fluoren-9-yl)methoxy)carbonyl)-*L*-lysine (Fmoc-Lys-OH). This compound was prepared as described in literature³. Fmoc-Lys(Boc)-OH (1.0 g, 2.10 mmol) was dissolved in a solution of TFA/DCM (1:1, 50 mL) and stirred for 2 h at room temperature. Following TFA evaporation and diethyl ether extraction, Fmoc-Lys-OH was obtained as a white powder (0.75 g, 95% yield). ¹H-NMR (400 MHz, DMSO-*d6*): δ 7.99 (d, *J* = 7.5 Hz, =CH, 2H), 7.76-7.71 (m, =CH, 2H), 7.62 (d, *J* = 8.1 Hz, NH, 1H), 7.42 (t, *J* = 7.5 Hz, =CH, 2H), 7.33 (t, *J* = 7.5 Hz, =CH, 2H), 4.34-4.26 (m, CH₂, 2H), 4.23 (t, *J* = 6.5 Hz, CH,

1H), 3.97-3.91 (m, CH, 1H), 2.78 (dd, *J* = 12.6, 6.5 Hz, CH₂, 2H), 1.76-1.72 (m, CH₂, 2H), 1.64-1.51 (m, NH₂, CH₂, 4H), 1.39-1.35 (m, CH₂, 2H); ¹³**C-NMR** (100 MHz, DMSO-*d6*): δ 173.8, 156.2, 143.8, 140.7, 127.6, 127.0, 125.2, 120.1, 65.6, 53.6, 46.6, 38.6, 30.1, 26.5, 22.5. Data is accordance with literature³.

2. UV-Vis detection of cations: The solution of **NDI-BIM 2** (1×10^{-2} M) and cations (chloride of metal ions, 1×10^{-2} M) were prepared in CH₃CN/H₂O (1:1/v:v). A solution of ligand (1×10^{-5} M) was placed in a quartz cell and the UV-Vis spectrum was recorded. After the introduction of the solution of cations (1 = quiv.), the changes in absorbance intensity were recorded at room temperature each time (Figure S1).

Figure S1. (A) Colorimetric screening of **NDI-BIM 2** $(1 \times 10^{-5} \text{ M})$ in CH₃CN/H₂O (7:3 v/v) in the presence of 1 equiv. of metals (B) UV-vis spectrum of chromophore **2** $(1 \times 10^{-4} \text{ M})$ in CH₃CN/H₂O (1:1 v/v) with various metals.

3. UV-Vis titration of the ligand with CuCl₂

The solution of **NDI-BIM 2** (1×10^{-2} M) and CuCl₂ (1×10^{-2} M) were prepared in CH₃CN/H₂O (1:1/v:v). The concentration of a solution of ligand used in the experiments was 1×10^{-5} M. The UV-Vis titration spectra were recorded by adding a corresponding concentration of CuCl₂ to a solution of a ligand in CH₃CN/H₂O (v/v: 1:1). Every titration was repeated at least twice until consistent values were obtained (Figure S2).

Figure S2. UV-vis titration of NDI-BIM 2 with Cu²⁺ in CH₃CN/H₂O (v/v, 1:1).

Binding constant (K_s) of the **NDI-BIM 2** for Cu^{2+} ions were obtained by using the absorbance titration results and relevant equations (Figure S12). The binding constants (Ks) of Cu^{2+} ions with probe **NDI-BIM 2** were calculated from the slope of the graphs drawn using the data obtained from using absorbance titration and the following Benesi-Hildebrand equation (1).⁴

$$\frac{1}{A - A_0} = \frac{1}{K_s (A_{max} - A_0) [X^-]^n} + \frac{1}{A_{max} - A_0}$$
(1)

Here A_o is the absorbance of receptor in the absence of guest, A is the absorbance recorded in the presence of an added guest, Amax is the absorbance in presence of added [Cu²⁺]max and K is the association constant (M⁻¹). The association constant (K) could be determined from the slope of the straight line of the plot of 1/(A-A_o) against 1/[Cu²⁺]n.

The LOD and LOQ values are calculated from the following formulas (2 and 3, The N is total experiments number) (Figure S3).

$$LOD = \frac{3.3 \times Standard Error (SE) \times \sqrt{N}}{Slope}$$
(2)
$$LOQ = \frac{10 \times Standard Error (SE) \times \sqrt{N}}{Slope}$$
(3)

Figure S3. The change absorbance intensity of the NDI-BIM 2 with the increasing concentration of CuCl₂

4. Job's plot measurement

NDI-BIM 2 was dissolved in CH₃CN/H₂O (1:1/v:v) to make the concentration of 1×10^{-2} M). 5.00, 4.75, 4.50, 4.25, 4.00, 3.75, 3.50, 3.25, 3.00, 2.75, 2.50, 2.25, 2.00, 1.75, 1.50, 1.25, 1.00, 0.75, 0.50 and 0.25 mL of the ligand solution were taken and transferred to vials. CuCl₂ was dissolved in CH₃CN/H₂O (1:1/v:v) to make the concentration of 1×10^{-2} M. 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.25, 3.50, 3.75, 4.00, 4.25, 4.50, 4.75 and 5 mL of the copper solution were added to each ligand solution. Each vial had a total volume of 5 mL. After shaking the vials for a few seconds, UV–vis spectra were taken at room temperature (Figure S4).

Figure S4. Job's plot titration of NDI-BIM 2 with Cu²⁺ in CH₃CN/H₂O (v/v, 1:1).

5. Circular Dichroism (CD) Measurement: CD spectra were recorded on an AVIV 202 CD spectrometer under a nitrogen atmosphere. Experiments were performed in a quartz cell with a 1 mm or 1 cm path length over the range of 190-450 nm at 25°C. CD spectra were taken routinely at NDI-BIMs concentration around 1000 - 250 µM (Figure S5).

Figure S5. The CD spectrums of NDI-BIM 1, NDI-BIM 2 and NDI-BIM 2-Cu²⁺ in CH₃CN/H₂O (v/v, 1:1) at pH 2 or 7.

6. Atomic Force Microscopy (AFM) Measurement: The AFM images were collected on a NanoScope IIIa device at ambient temperature in tapping mode using silicon tips (NSC14/AIBS, MikroMasch). 10 μ L of the sample solution (250 μ M) was diluted 10-fold and placed on freshly cleaved mica. After adsorption for 30 min under moist conditions, excess solution was removed by absorption onto filter paper. The resultant substrates were rinsed with a solvent (2×50 μ L) to remove the loosely bound monomers and the samples were stored in a desiccator in vacuum for 1 h before imaging. The scanning speed was at a line frequency of 1.0 Hz, and the original images were sampled at a resolution of 512×512 pixels (Figure S6).

Figure S6. The AFM images of **NDI-BIM 1** (A and B), **NDI-BIM 2** (C and D), and **NDI-BIM 2-Cu²⁺** (E and F) in CH₃CN/H₂O (v/v, 1:1) at pH 2 or 7.

7. Transmission Electron Microscopy (TEM) Measurement: 10 μ L drops of 1 or 2 in 50% CH₃CN/H₂O solutions at pH 2 or 7 after incubation (at least 12h) were applied to a carbon-coated copper grid (Ted Pella, Inc.) for 10 minutes after dilution from 10 mM to concentration ranging from 2.5 mM. After removing the excess solution with filter paper, the grid was floated on 10 μ L drops of 2% wt uranyl acetate solution for negative stain for 2 min. The excess solution was removed by filter paper. The dried specimen was observed with the Technai G2 Spirit instrument operating at 80 kV. The data were analyzed with Image-Pro software (Figure S7, S8).

Figure S7. The TEM images of NDI-BIM 1 (A) at pH 7 and (B-D) at pH 2 in CH₃CN/H₂O (v/v, 1:1)

Figure S8. The TEM images of **NDI-BIM 2** (A-B) at pH 2, (D-F) at pH 7,and **NDI-BIM 2** with Cu^{2+} (G-I) at pH 7 in CH₃CN/H₂O (v/v, 1:1)

8. Scanning Electron Microscopy (SEM) Measurement: 10 µL drops of 1 or 2 in 50% CH₃CN/H₂O solutions at pH 2 or 7 after incubation (at least 12h) were applied to a carbon-coated copper grid (Ted Pella, Inc.) for 10 minutes after dilution from 10 mM to concentration ranging from 2.5 mM.

After removing the excess solution with filter paper, the grid was floated on 10 μ L drops of 2% wt uranyl acetate solution for negative stain for 2 min. The excess solution was removed by filter paper. The dried specimen was observed with an FEI Nova NanoSEM 400 scanning electron microscope (Figure S9).

Figure S9. The SEM images of **NDI-BIM 1** (A) at pH 2, **NDI-BIM 2** (B) at pH 7, **NDI-BIM 2** (C) at pH 2 and **NDI-BIM 2-Cu²⁺** (D) at pH 7 in CH₃CN/H₂O (v/v, 1:1.

9. Dynamic Light Scattering (DLS) Measurement: 50 µL of a solution of **2** after 10-fold dilution from the original concentrate was prepared. The experiments were performed using a Malvern Nano series Zetasizer. Dynamic light scattering (DLS) shows a wide range of large aggregates of **2** at 10 mM concentration in 50% CH₃CN/water. However, the addition of CuCl₂ to **2** resulted in the formation of a uniform array of liposomes with dimensions ranging from 500 to 1400 nm (maximum at 844 nm) (Figure S10).

	Z-Avg	Pk 1 Avg (I)	Pk 2 Avg (I)	Pk 3 Avg (I)	DCR
Rec #	d.nm	d.nm	d.nm	d.nm	Kcps
2 + Cu ²⁺	2141	822.8	0	0	1402.1
2	638.5	717.7	156.4	5373	185.8

Figure S10: (left) DLS spectra of NDI-BIM 2 (black) and NDI-BIM 2 + Cu²⁺ solution (red)

10. X-ray Photon Spectroscopy (XPS) Analysis:

Figure S11: (Left) Auger Cu LMM spectrum of **NDI-BIM 2**+CuCl₂ (black) and CuCl₂ (red) (Right) XPS Cu 2p_{1/2} and Cu2p_{3/2} spectrum of **NDI-BIM 2** (black), **NDI-BIM 2**+CuCl₂ (blue) and CuCl₂ (red)

Figure S12. (Left) Cu2p_{1/2} spectrum of **NDI-BIM 2** (black), **NDI-BIM 2**+CuCl₂ (blue) and CuCl₂ (red) (Right) Cu2p_{3/2} spectrum of **NDI-BIM 2** (black), **NDI-BIM 2**+CuCl₂ (blue) and CuCl₂ (red)

Figure S13. The walls lengths of the nanotubes considering the lengths of **NDI-BIM 1** (A, 2.0 nm, pH 2) and **NDI-BIM 2** (B, 2.3 nm, pH 7).

Figure S14. The UV-Vis (A) and CD (B) spectra of **NDI-BIM 2** in a wide range of solvent systems at pH 7.

References

1. Rosario M., Arturo E., Alberto T., Pedro M., Tetrahedron 2008, 64, 2184-2191.

2. Siyu, T., Se H. K., Jojo J., David A. M., Jon R. P., J. Am. Chem. Soc. 2011, 133, 19125–19130.

3. Ludwig, V., Krebs, A., Stoll, M., Dietrich, U., Ferner, J., Schwalbe, H., Scheffer, U., Dürner, G., Gobel, M. W., *ChemBioChem* **2007**, 8, 1850 – 1856.

4. H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703; (b) K. A. Conners, Binding Constants, The Measurement of Molecular Complex Stability; Wiley: New York, 1987.

11. ¹H- and ¹³C-NMR Spectra

12. HRMS Spectra

m/z