

SUPPORTING INFORMATION

Electronic Supporting Information for:

Metal coordination of phosphoniocarbynes

Chee S. Onn, Anthony F. Hill and Angus Olding

Cartesian coordinates for model complexes and Selected Spectra

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, **00**, 1-3 | **1**

SUPPORTING INFORMATION

Figure S1. ¹H NMR Spectrum of [1a]PF₆

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, **00**, 1-3 | **2**

SUPPORTING INFORMATION

Figure S2. ¹³C{¹H} NMR Spectrum of [1a]PF₆

Dalton Transaction

Figure S3. ³¹P(proton coupled) NMR Spectrum of [1a]PF₆

4 | Dalton Trans., 2020, 00, 1-3

This journal is © The Royal Society of Chemistry 2020

Please do not adjust margins

Dalton Transactions

SUPPORTING INFORMATION

Figure S4. ¹H NMR Spectrum of [4]PF₆

Dalton Transaction

Figure S5. ${}^{13}C{}^{1}H$ NMR Spectrum of [4]PF₆

6 | Dalton Trans., 2020, 00, 1-3

This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, 00, 1-3 | 7

Dalton Transaction

Figure S7. ¹H NMR Spectrum (400 MHz) of [5]PF₆

8 | Dalton Trans., 2020, 00, 1-3

This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Figure S8. ¹H NMR Spectrum (700 MHz) of [5]PF₆

This journal is © The Royal Society of Chemistry 2020

Dalton Transaction

10 | Dalton Trans., 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

Figure S10. ${}^{13}C{}^{1}H$ NMR Spectrum of [5]PF₆

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, 00, 1-3 | 11

Please do not adjust margins

SUPPORTING INFORMATION

Dalton Transaction

Figure S11. ³¹P{¹H} NMR Spectrum of [**5**]PF₆

12 | Dalton Trans., 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Figure S12. ESI Mass Spectra of [5]PF₆

(a) Observed versus simulated spectrum for detected target formulas [M+H]+ & (M+Na)+ ions

This journal is © The Royal Society of Chemistry 2020

Dalton Transaction

(b) Full Spectra:

Lime (min) 63734 #13 RT: 0.34 AV: 1 NL: 4.89E5 T: FTMS + p ESI Full ms [150.00-2000.00] 0 1624.40759 7=1 100-1592.37451 90z=1 80-8 70 J -00 ga 1577.36707 1463.56921 z=1 z=1 1292.31653 Ing 50z=1 1549.38000 Relative z=1 1383.30872 40-1078.27856 1421.31091 1476.30457 1264.32068 z=1 1305.31030 z=? 30z=1 z=1 z=1 992.28986 1041.30579 1090.28015 1162.23474 1207.29175 1654.41016 880.15332 z=1 z=1 1522.37012 z=? z=1 20-931.22772 z=1 1684.36829 z=1 Z=1 z=1 10 01 1750 950 1200 1250 850 900 1000 1050 1100 1150 1300 1350 1400 1450 1500 1550 1600 1650 1700 m/z

14 | Dalton Trans., 2020, 00, 1-3

This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Figure S13. ¹H NMR Spectrum of [6]PF₆

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, 00, 1-3 | 15

Dalton Transaction

Figure S14. ${}^{13}C{}^{1}H$ NMR Spectrum of [6]PF₆

16 | Dalton Trans., 2020, 00, 1-3

This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Figure S15. ³¹P (proton coupled) NMR Spectrum of [6]PF₆

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, 00, 1-3 | 17

Dalton Transaction

Figure S16. ${}^{31}P{}^{1}H$ NMR Spectrum of [6]PF₆

18 | Dalton Trans., 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

Figure S17. ¹³C-¹H HSQC NMR Spectrum of [6]PF₆

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, 00, 1-3 | 19

Figure S18. ¹³C-¹H HMBC NMR Spectrum of [6]PF₆

20 | Dalton Trans., 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

Figure S19. ¹H-¹H DQF-COSY NMR Spectrum of [6]PF₆

This journal is © The Royal Society of Chemistry 2020

Dalton Transaction

22 | Dalton Trans., 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, **00**, 1-3 | **23**

Dalton Transaction

AC-4-28 - Pt tBuNC/1 - phosphorus 13C-HMBC w/ suppression of direct correlations, optimal for J(HC) = 8 Hz (hmbcC.go - hmbcetgpl2nd) 17.66 17.49 17.37 -17.25 17.08 400 -300 -32 -200 -30 -21 -100 -21 -22 -0 -20 19.5 15.5 19.0 18.5 18.0 17.5 f1 (ppm) 17.0 16.5 16.0 80 -60 NEW WORLDWING TO A STATE -0 100 50 ò . f1 (00m) -100 -150 -200 50 -250

Figure S22. ³¹P{¹H} NMR Spectrum of [7]PF₆ (283 MHz, 25 °C)

24 | Dalton Trans., 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Figure S23.¹⁹⁵Pt{¹H} NMR Spectrum of [7]PF₆ (150 MHz, 25 °C)

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, 00, 1-3 | 25

Please do not adjust margins

Dalton Transaction

26 | Dalton Trans., 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

Please do not adjust margins

SUPPORTING INFORMATION

Dalton Transaction

28 | Dalton Trans., 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, 00, 1-3 | 29

Figure S27. ³¹P $\{^{1}H\}$ NMR Spectrum of [8]PF₆

30 | Dalton Trans., 2020, 00, 1-3

This journal is © The Royal Society of Chemistry 2020

Figure S28.¹⁹⁵Pt{¹H} NMR Spectrum of [**8**]PF₆

This journal is © The Royal Society of Chemistry 2020

Dalton Trans., 2020, 00, 1-3 | 31

Please do not adjust margins

SUPPORTING INFORMATION

Dalton Transaction

Figure S29. ESI Mass Spectra for [8]PF₆

32 | Dalton Trans., 2020, **00**, 1-3

This journal is © The Royal Society of Chemistry 2020

Please do not adjust margins

Dalton Transactions

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Geometry Optimisation for

[W(≡CCMe₃)(CO)₂(Tp)] (WC)

Method: DFT/ ω B97X-D/6-31G*/LANL2D ζ , gas phase.

Н	3.345876	4.103380	-0.358602
н	3.684073	2.400036	0.015611
В	-1.827082	-2.321515	0.021008
Н	-2.659585	-3.153947	-0.231762
Н	-2.110112	2.225637	0.362554
Н	-4.484805	-1.295841	-0.390033
Н	-1.308383	-3.888537	-2.334951
Н	2.005934	-1.133868	-2.163474
Н	0.870734	-1.754738	3.661966
Н	-2.210117	-4.316855	2.067865
С	0.607564	3.864591	-0.717899
Н	0.997361	4.799964	-1.136731
Н	0.303616	4.050354	0.317586
Н	-0.278861	3.574071	-1.292049

Ator	n x	У	z
W	0.503680	0.060885	0.651349
С	1.683413	2.763932	-0.779549
Ν	-1.701542	0.179812	0.267616
Ν	-0.710906	-2.337773	-1.041961
Ν	0.318989	-1.466413	-0.978226
Ν	-0.237354	-1.779794	1.888760
Ν	-2.456960	-0.913922	0.029358
0	0.397208	1.922414	3.192750
Ν	-1.200109	-2.591889	1.402919
С	1.118600	1.523097	-0.206458
0	3.530869	-0.611033	1.225481
С	2.414656	-0.375159	1.031719
С	1.108857	-1.718879	-2.022951
С	0.584744	-2.764930	-2.786418
Н	0.990679	-3.195899	-3.688234
С	0.435842	1.221524	2.272261
С	-0.643371	-3.396142	3.389522
Н	-0.597454	-4.003302	4.280057
С	-2.512689	1.236223	0.201621
С	-0.574155	-3.125732	-2.122159
С	-3.732519	-0.548676	-0.185120
С	-3.817992	0.828675	-0.085732
Н	-4.694765	1.446319	-0.202091
С	0.106283	-2.256322	3.085201
С	2.085596	2.495570	-2.241376
Н	2.850357	1.713773	-2.295812
Н	2.494209	3.406615	-2.694419
Н	1.221790	2.174016	-2.832208
С	-1.461818	-3.569508	2.287127
С	2.915719	3.178944	0.044802
н	2.643934	3.350840	1.091084

Geometry Optimisation for [W(≡CSiMe₃)(CO)₂(Tp)] (WSi)

Method: DFT/ ω B97X-D/6-31G*/LANL2D ζ , gas phase.

Н	1.875406	-1.245624	-2.215004
Н	0.821694	-1.888110	3.662686
Н	-2.271164	-4.451274	2.092925
С	0.533539	4.361313	-0.713050
Н	0.934045	5.324044	-1.051246
Н	0.181851	4.485836	0.317106
Н	-0.332463	4.118276	-1.338788

Ator	n x	y	z
W	0.423035	-0.053981	0.612696
Si	1.834158	3.000290	-0.810655
Ν	-1.780250	0.054192	0.265583
Ν	-0.808270	-2.468441	-1.030705
Ν	0.218397	-1.591620	-0.990432
Ν	-0.303782	-1.909394	1.899904
Ν	-2.540146	-1.042775	0.055562
0	0.323077	1.788159	3.175750
Ν	-1.271344	-2.721617	1.422754
С	1.054772	1.411684	-0.216943
0	3.445549	-0.749501	1.212408
С	2.335806	-0.505443	1.002573
С	0.989573	-1.840968	-2.049743
С	0.459545	-2.895947	-2.795732
Н	0.850592	-3.328021	-3.703471
С	0.359686	1.098945	2.248487
С	-0.692441	-3.530935	3.400529
Н	-0.635632	-4.141306	4.288261
С	-2.591246	1.111290	0.201473
С	-0.683078	-3.263431	-2.106580
С	-3.819079	-0.678094	-0.138829
С	-3.901514	0.700781	-0.055581
Н	-4.779971	1.317573	-0.163321
С	0.052078	-2.388397	3.091629
С	2.415693	2.773838	-2.588861
Н	3.170048	1.982352	-2.656279
Н	2.859827	3.696496	-2.979864
Н	1.580079	2.497936	-3.241018
С	-1.522085	-3.702950	2.306494
С	3.287490	3.384241	0.324554
Н	2.946716	3.508119	1.358265
Н	3.800137	4.304958	0.023163
Н	4.016402	2.566757	0.312819
В	-1.911702	-2.450958	0.047365
Н	-2.748755	-3.281074	-0.195435
Н	-2.185027	2.102673	0.339574
Н	-4.575865	-1.426948	-0.319909
Н	-1.415380	-4.032941	-2.301109

Geometry Optimisation for [W(≡CNMe₃)(CO)₂(Tp)]⁺ (WN)

Method: DFT/ωB97X-D/6-31G*/LANL2Dζ, gas phase.

Н	0.930483	-1.599969	3.594679
Н	-2.140032	-4.238235	2.116197
С	0.655603	3.850621	-0.686053
Н	1.092613	4.770917	-1.078744
Н	0.376506	3.973408	0.360258
Н	-0.213865	3.555394	-1.273307

Cartesian Coordinates

Ator	n x	у	z
W	0.462750	0.067389	0.559296
Ν	1.676748	2.751174	-0.773759
Ν	-1.715182	0.191845	0.212753
Ν	-0.722024	-2.336245	-1.074586
Ν	0.307488	-1.461471	-1.024527
Ν	-0.204442	-1.684252	1.828945
Ν	-2.467098	-0.907602	-0.015112
0	0.287212	1.846560	3.176311
Ν	-1.167791	-2.523836	1.379331
С	1.088612	1.528871	-0.281795
0	3.461509	-0.729755	1.218555
С	2.367928	-0.457903	0.994401
С	1.118075	-1.753877	-2.047521
С	0.608714	-2.826217	-2.776899
Н	1.031184	-3.293414	-3.652535
С	0.346782	1.178607	2.242438
С	-0.566413	-3.256562	3.383854
Н	-0.500413	-3.837290	4.290363
С	-2.543301	1.241775	0.191640
С	-0.560653	-3.165991	-2.116921
С	-3.750908	-0.552706	-0.179234
С	-3.848498	0.823723	-0.059795
Н	-4.737042	1.430518	-0.135420
С	0.163734	-2.121980	3.039394
С	2.085381	2.546942	-2.205670
Н	2.827602	1.749860	-2.237076
Н	2.504782	3.479346	-2.588783
Н	1.202802	2.255613	-2.774801
С	-1.399091	-3.473653	2.297816
С	2.878908	3.102030	0.058646
Н	2.554348	3.232535	1.090750
Н	3.316565	4.024093	-0.328820
Н	3.591692	2.280209	-0.004350
В	-1.827187	-2.310106	-0.000691
Н	-2.649692	-3.156724	-0.212836
Н	-2.156996	2.235224	0.366701
Н	-4.504523	-1.303815	-0.363639
Н	-1.285712	-3.941974	-2.312475
Н	2.022843	-1.183076	-2.196983

This journal is © The Royal Society of Chemistry 2020

Geometry Optimisation for [W(≡CPMe₃)(CO)₂(Tp)]⁺ (WP)

Method: DFT/0B97X-D/6-31G*/LANL2Dζ, gas phase

В	-1.905078	-2.458649	0.035588
Н	-2.716692	-3.322054	-0.148169
Н	-2.288762	2.094838	0.233954
Н	-4.601932	-1.499960	-0.318408
Н	-1.362932	-4.135236	-2.245284
Н	1.884452	-1.301012	-2.252502
Н	0.876245	-1.631227	3.588738
Н	-2.164761	-4.347498	2.192885
С	0.690622	4.338818	-0.551675
Н	1.197634	5.270823	-0.817876
Н	0.370473	4.385323	0.492615
Н	-0.187948	4.209033	-1.188865

Ator	n x	У	z
W	0.346467	-0.025606	0.488820
Р	1.806889	2.927879	-0.772979
Ν	-1.826366	0.051597	0.164170
Ν	-0.812984	-2.491882	-1.052244
Ν	0.199500	-1.595481	-1.040196
Ν	-0.274575	-1.767098	1.836930
Ν	-2.566066	-1.066368	-0.010453
0	0.151005	1.768200	3.100781
Ν	-1.228627	-2.631310	1.413320
С	1.001079	1.444516	-0.338082
0	3.346745	-0.807079	1.179939
С	2.256637	-0.538906	0.940641
С	0.999011	-1.892363	-2.071342
С	0.498980	-2.990326	-2.767306
Н	0.914667	-3.466492	-3.641326
С	0.216761	1.101705	2.167870
С	-0.594362	-3.316309	3.424642
Н	-0.509199	-3.878711	4.341116
С	-2.667513	1.090733	0.111882
С	-0.651237	-3.340222	-2.079013
С	-3.855632	-0.733274	-0.172284
С	-3.969335	0.645778	-0.106117
Н	-4.866110	1.238132	-0.197187
С	0.112761	-2.176181	3.051114
С	2.336702	2.891757	-2.504765
Н	3.042940	2.070553	-2.651804
Н	2.818605	3.836295	-2.773295
Н	1.467391	2.730561	-3.147404
С	-1.434653	-3.567511	2.351901
С	3.265877	3.186034	0.270719
Н	2.955308	3.246007	1.317268
Н	3.778050	4.110791	-0.010590
Н	3.949961	2.341382	0.154275

Geometry Optimisation for $[WPt(\mu-CPMe_3)(CNMe)_2(CO)_2(Tp)]^+ [10]^+$

Method: DFT/ωB97X-D/6-31G*/LANL2Dζ, gas phase

Aton	ı x	У	z
Pt	-2.426998	0.022790	0.547092
W	-0.048260	-0.730789	-0.697796
Р	0.241750	1.775644	1.656866
С	-0.527390	0.571754	0.654066
Ν	1.773540	-1.259546	0.477679
С	-1.043900	-2.398667	-0.187157
0	-1.567076	-3.408526	0.022520
Ν	1.323746	0.766319	-1.629043
Ν	1.110028	-1.997650	-2.162910
0	-2.209924	-0.486057	-2.993349
С	-1.455657	-0.531630	-2.118541
Ν	3.024996	-1.165172	-0.017283
Ν	2.447718	-1.872365	-2.330625
С	-3.432861	1.129135	1.802212
Ν	2.644037	0.550180	-1.801957
С	-3.961430	-1.063431	-0.144479
Ν	-4.033977	1.797021	2.549101
Ν	-4.804597	-1.733015	-0.586630
С	2.871270	-2.747083	-3.255797
С	1.069230	2.005230	-2.060752
Carte	esian Coord	inates (cont.	.)
Atom	ı x	У	z
С	0.702061	-2.962396	-2.995496
С	1.782634	-3.471307	-3.713003
Н	1.775548	-4.252376	-4.456789
С	1.883145	-1.662427	1.747247
С	2.245462	2.611245	-2.507493
Н	2.367294	3.600016	-2.921525
С	3.220163	1.642465	-2.331008
С	3.917295	-1.497284	0.930740
С	2.033121	1.943962	1.422735
Н	2.528215	0.997472	1.652224
Н	2.414658	2.721260	2.091769
Н	2.249955	2.221231	0.388313
С	3.228188	-1.817117	2.089469

Н	3.639943	-2.138880	3.033304
С	-0.471626	3.418600	1.356961
Н	-0.264707	3.713205	0.324974
Н	-0.039977	4.158262	2.037603
Н	-1.553931	3.370935	1.497636
В	3.242654	-0.840513	-1.509649
Н	4.410497	-0.868257	-1.785546
Н	4.276528	1.648191	-2.555682
Н	3.916442	-2.793358	-3.524233
Н	4.974517	-1.495667	0.710106
Н	0.989898	-1.822239	2.333989
Н	0.057148	2.382451	-2.028558
Н	-0.342436	-3.236759	-3.032658
С	-5.791360	-2.583000	-1.150505
Н	-5.301784	-3.443686	-1.610799
Н	-6.352862	-2.032323	-1.907877
Н	-6.469249	-2.923832	-0.365486
С	-4.854034	2.565760	3.417741
Н	-4.227384	3.183454	4.064686
Н	-5.460309	1.896106	4.031507
Н	-5.507952	3.208071	2.823827
С	-0.012749	1.399122	3.415029
Н	0.406334	2.188015	4.046324
Н	0.477673	0.450710	3.648913
Н	-1.083258	1.296745	3.607996

Geometry Optimisation for $[WAu(\mu-CPMe_3)Cl(CO)_2(Tp)]^+ [10]^+$

Method: DFT/ ω B97X-D/6-31G*/LANL2D ζ , gas phase

Н	-2.716903	-2.391335	3.846353
Н	-0.920341	-4.990663	0.570804
Н	2.261220	-2.355287	-0.659309
С	1.743578	2.996235	-3.093261
Н	2.119301	4.005328	-3.286292
Н	0.663658	2.971297	-3.262393
Н	2.229257	2.289393	-3.772264

Atom x		У	z
Au	0.645218	-0.147535	-2.540208
W	0.088005	0.109975	0.258995
Cl	0.424667	-1.255130	-4.547195
Р	2.098269	2.516102	-1.385194
Ν	-1.926684	-0.369852	-0.460220
Ν	-0.653735	-2.904623	0.513035
Ν	0.336100	-2.063068	0.134923
Ν	-0.794531	-0.394233	2.221940
Ν	-2.600459	-1.444587	0.005638
0	-0.882959	3.014572	1.059765
Ν	-1.625695	-1.462898	2.310260
С	1.099557	1.116927	-0.971913
0	2.758039	0.304871	1.957996
С	1.786433	0.230676	1.352759
С	1.356543	-2.819298	-0.293650
С	1.022797	-4.166707	-0.199265
Н	1.624680	-5.016682	-0.478843
С	-0.536304	1.954740	0.784351
С	-1.478236	-0.583473	4.344303
Н	-1.610965	-0.405470	5.399767
С	-2.713994	0.228438	-1.364567
С	-0.260617	-4.172748	0.322080
С	-3.794754	-1.523503	-0.599976
С	-3.910636	-0.470657	-1.492308
Н	-4.739314	-0.246828	-2.145055
С	-0.703409	0.141413	3.448282
С	3.851069	2.094025	-1.244446
Н	4.151959	2.125953	-0.193995
Н	4.451730	2.806424	-1.817641
Н	4.016263	1.083323	-1.628893
С	-2.044349	-1.590526	3.576093
С	1.751910	3.922388	-0.299743
Н	1.002272	4.572493	-0.757355
Н	2.670100	4.495396	-0.139815
Н	1.381438	3.567289	0.665091
В	-1.969215	-2.346584	1.079856
Н	-2.713985	-3.230116	1.397751
Н	-2.371520	1.113217	-1.881475
Н	-4.479005	-2.321289	-0.352085
Н	-0.086455	1.012615	3.617322

SUPPORTING INFORMATION

Calculated Infrared Spectrum for [W(=CCMe₃)(CO)₂(Tp)] (WC) (DFT/ωB97X-D/6-31G*/LANL2Dζ, gas phase)

Calculated Infrared Spectrum for [W(≡CSiMe₃)(CO)₂(Tp)] (WSi) (DFT/@B97X-D/6-31G*/LANL2Dζ, gas phase)

Calculated Infrared Spectrum for [W(=CNMe₃)(CO)₂(Tp)]⁺ (WN) (DFT/ωB97X-D/6-31G*/LANL2Dζ, gas phase)

Calculated Infrared Spectrum for [W(=CPMe₃)(CO)₂(Tp)]⁺ (WP) (DFT/ωB97X-D/6-31G*/LANL2Dζ, gas phase)

Calculated Infrared Spectrum for [WPt(μCPMe₃)(CNMe)₂(CO)₂(Tp)]⁺ [10]⁺ (DFT/ωB97X-D/6-31G*/LANL2Dζ, gas phase)

Calculated Infrared Spectrum for [WAu(μCPMe₃)Cl(CO)₂(Tp)]⁺ [11]⁺ (DFT/ωB97X-D/6-31G*/LANL2Dζ, gas phase)

