Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting information of

Air-stable Pd(0) catalyst bearing dual phosphine ligands: a detailed evaluation of air stability and catalytic property in cross-coupling reactions

Ryota Sato, Takaki Kanbara*, Junpei Kuwabara*

Tsukuba Research Center for Energy Materials Science (TREMS), Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan

Table of Contents

1.	Plausible reaction mechanism (Figure S1)	S2
2.	NMR spectra of Complex 3 (Figure S2, 3)	S3
3.	DFT calculation of $Pd(0)L_2$ (Figure S4)	S4
4.	NMR spectra of coupling products (Figure S5-S14)	S5
5.	Supporting table (Table S1)	S10
6.	Crystallographic data (Table S2)	S11

Figure S1. Plausible reaction mechanism of direct C-H arylation reaction by Complex 1.

Figure S2. ¹H NMR spectrum of Complex 3 (400 MHz, acetone-*d*₆, r.t., under N₂).

Figure S3. ³¹P NMR spectrum of Complex 3 (162 MHz, acetone- d_6 , r.t., under N₂, external standard: 85% H₃PO₄ 0 ppm).

Figure S4. Chemical structures (top), HOMO and LUMO distribution and energy levels of $Pd(PCy_3)(PAr^F_3)$ and $Pd(PAr^F_3)_2$ based on DFT calculations (bottom).

The high energy Pd-centred HOMO of $Pd(PCy_3)(PAr^F_3)$ may contribute to high reactivity in the oxidative addition step. Theoretical calculations have revealed that a transition state of an oxidative addition step involves interaction between an occupied 4d orbital of a Pd centre and an unoccupied $\sigma^*(and \pi^*)$ orbital of a substrate.^{S1} The high energy Pd-centred orbital is able to make strong interaction to the high-lying $\sigma^*(and \pi^*)$ orbital of the substrate,^{S2} which resulted in the low activation energy of the oxidative addition step. Form these insights, an energy level of Pd-centred orbital is expected to be a simple guideline for estimating activity for oxidative addition of the complex.

Figure S5. ¹H NMR spectrum of 5-(4-methoxyphenyl)-2-cyanothiophene (400 MHz, chloroform-*d*, r.t.).

Figure S6. ¹H NMR spectrum of 5-phenyl-2-cyanothiophene (400 MHz, chloroform-*d*, r.t.).

ure S7. ¹H NMR spectrum of 5-(4-methylphenyl)-2-cyanothiophene (400 MHz, chloroform-d, r.t.).

Figure S8. ¹H NMR spectrum of 5-(4-trifluoromehylphenyl)-2-cyanothiophene (400 MHz, chloroform-*d*, r.t.).

Figure S9. ¹H NMR spectrum of 5-(4-methoxyphenyl)-2-cyanothiophene (400 MHz, chloroform-*d*, r.t.).

Figure S10. ¹H NMR spectrum of 5-(4-methoxyphenyl)-2-formylthiophene (400 MHz, chloroform-*d*, r.t.).

Figure S11. ¹H NMR spectrum of 4-methylbiphenyl (400 MHz, chloroform-*d*, r.t.).

Figure S12. ¹H NMR spectrum of 4-methoxylbiphenyl (400 MHz, chloroform-*d*, r.t.).

Figure S13. ¹H NMR spectrum of 4-trifluoromethylbiphenyl (400 MHz, chloroform-*d*, r.t.).

Figure S14. ¹H NMR spectrum of 2-phenylpyridine (400 MHz, chloroform-*d*, r.t.).

		,Br	(HO) ₂ B	Com ba	plex 1 (X mol%) ase (Y equiv.)		
	0.25 mmol		W equiv.	solvent (1.0 mL) 100 °C, time, N ₂			
entry	W	Х	base	Y	solvent	time	NMR yield ^a
						(h)	(%)
S 1	1.05	1	Cs_2CO_3	1	DMF	5	74
S2	1.05	1	Cs_2CO_3	1	toluene	5	35
S 3	1.05	1	Cs_2CO_3	1	1,4-dioxane	5	88
S4	1.2	1	Cs_2CO_3	1	1,4-dioxane	5	77
S5	1.05	1	Cs_2CO_3	2	1,4-dioxane	5	94
$\mathbf{S6}^{b}$	1.05	0.5	Cs_2CO_3	2	1,4-dioxane	4	96
$S7^b$	1.05	0.5	K ₂ CO ₃	2	1,4-dioxane	4	quant.

Table S1. Optimizing reaction condition of Suzuki-Miyaura cross-coupling reaction.

^{*a*}The yield was determined by ¹H NMR analyses of a crude product with ferrocene as an internal standard. ^{*b*}0.5 mmol scale.

	Complex 5				
Empirical Formula	$C_{53}H_{56}F_{18}O_2P_2Pd\cdot C_{3.5}O$				
Formula Weight	1293.38				
Crystal Color	colorless				
Crystal Dimensions / mm	0.35 x 0.25 x 0.2				
Crystal System	triclinic				
Lattice Parameters					
<i>a</i> / Å	14.2183(11)				
<i>b</i> / Å	14.2230(9)				
<i>c</i> / Å	15.4574(11)				
α / deg.	102.2520(10)				
β / deg.	92.1720(10)				
γ / deg.	110.8340(10)				
V / Å ³	2832.9(3)				
Space Group	<i>P</i> -1 (#2)				
Ζ	2				
D / gcm^{-3}	1.516				
F000	1314.0				
μ (MoK α) / cm ⁻¹	4.864				
Reflection/Parameter Ratio	17.07				
$R1 (I > 2.00\sigma(I))$	0.0443				
R (All reflections)	0.0473				
wR2 (All reflections)	0.1178				
Goodness of Fit Indicator	1.061				

Table S2. Crystallographic data of Complex 3

The crystal contains disordered toluene molecules and water molecules as cocrystalizing species.

References

S1 A. Ariafard and Z. Lin, Organometallics, 2006, 25, 4030–4033.

S2 L. P. Wolters, W. J. Van Zeist and F. M. Bickelhaupt, *Chem. Eur. J.*, 2014, **20**, 11370–11381.