New quaternary chalcogenide $Ba_4HgAs_2S_{10}$ originating from the combination of linear $[HgS_2]^{2-}$ and tetrahedral $[AsS_4]^{3-}$ modules

Wenhao Xing,^{a, b, c, d} Naizheng Wang,^{a, c} Zhuang Li,^{a, c} Wenhao Liu,^a Jian Tang,^{b, d} Wenlong

Yin,^{b, d}* Zheshuai Lin,^a Bin Kang,^{b, d} and Jiyong Yao^a*

^a Beijing Center for Crystal Research and Development, Key Lab of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China, corresponding author: Jiyong Yao, E-mail: jyao@mail.ipc.ac.cn.

^c University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^d Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China.

Atom	x	у	Z	$U_{ m eq}({ m \AA}^2)$ a	BVS	
Hg1	0.5000	0.63849 (3)	0.7500	0.02033 (6)	1.980	
Hg2	0.5000	1.0000	1.0000	0.02082 (7)	1.975	
Ba1	0.68946 (2)	0.60340 (4)	0.70683 (2)	0.01969 (7)	1.864	
Ba2	0.56505 (2)	1.10794 (3)	0.64831 (2)	0.01416 (6)	1.955	
Ba3	0.56452 (2)	0.52898 (3)	0.89960 (2)	0.01489 (6)	1.936	
Ba4	0.69072 (2)	1.00141 (3)	0.95371 (2)	0.01642 (7)	1.958	
As1	0.64408 (2)	1.08286 (6)	0.79858 (2)	0.01109 (8)	5.005	
As2	0.64423 (2)	0.52691 (5)	0.54873 (2)	0.01047 (8)	4.985	
S 1	0.55278 (4)	0.62475 (13)	0.67082 (3)	0.01428 (18)	2.035	
S2	0.65655 (4)	0.77064 (14)	0.82631 (3)	0.0195 (2)	1.931	
S3	0.55660 (4)	1.18888 (19)	0.78361 (4)	0.0285 (2)	1.806	
S4	0.69083 (4)	1.29058 (15)	0.85035 (4)	0.0201 (2)	1.966	
S5	6885.0(4)	10957.5(14)	7214.3(3)	14.45(19)	2.139	
S 6	5537.6(4)	10264.6(14)	9215.3(3)	14.54(18)	2.030	
S 7	6572.5(4)	8416.7(14)	5740.5(4)	20.1(2)	1.760	
S 8	5561.3(4)	4252.6(17)	5349.7(4)	21.9(2)	1.881	
S9	6894.2(4)	3213.0(14)	6027.3(3)	16.45(18)	2.024	
S10	6887.2(4)	4993.0(13)	4719.0(3)	13.63(19)	2.110	

 $\overline{{}^{a} U_{eq}}$ is defined as one-third of the trace of the orthogonalized *Uij* tensor.

Hg1—S1 ⁱ	2.3237(8)	Ba3—S4 ^{vi}	3.4920(10)
Hg1—S1	2.3237(8)	Ba3—S6	3.2751(9)
Hg2—S6 ⁱⁱⁱ	2.3246(8)	Ba3—S6 ^{vi}	3.3072(9)
Hg2—S6	2.3247(8)	Ba3—S8 ^x	3.4112(9)
Ba1—S1	3.2430(9)	Ba3—S8 ⁱ	3.2722(10)
Ba1—S2	3.2720(9)	Ba3—S10 ^x	3.3620(9)
Ba1—S4 ^{iv}	3.3121(10)	Ba4—S2	3.6085(10)
Ba1—S5 ^{iv}	3.3083(9)	Ba4—S4	3.1955(10)
Ba1—S5 ^{vi}	3.3055(10)	Ba4—S6	3.2252(9)
Ba1—S5	3.2071(10)	Ba4—S7 ⁱⁱ	3.2735(9)
Ba1—S9	3.1841(9)	Ba4—S9 ^v	3.2904(9)
Ba2—S1 ^{vii}	3.4032(9)	Ba4—S10 ^x	3.2724(9)
Ba2—S1	3.1897(9)	Ba4—S10 ⁱⁱ	3.2633(9)
Ba2—S3 ⁱ	3.2987(10)	Ba4—S10 ^v	3.3164(9)
Ba2—S3	3.4367(10)	As1—S2	2.1553(10)
Ba2—S5	3.3547(9)	As1—S3	2.1402(10)
Ba2—S6 ⁱ	3.2631(9)	As1—S4	2.1492(10)
Ba2—S7	3.2948(9)	As1—S5	2.1852(9)
Ba2—S8 ^{vii}	3.5104(10)	As2—S7	2.1538(10)
Ba2—S9 ^{vii}	3.3538(9)	As2—S8	2.1393(10)
Ba3—S1 ⁱ	3.2590(9)	As2—S9	2.1579(9)
Ba3—S2	3.1981(9)	As2—S10	2.1847(9)
Ba3—S3 ^{vi}	3.6503(12)		
S1 ⁱ —Hg1—S1	175.61(4)	S4—As1—S5	106.29(4)
S6 ⁱⁱⁱ —Hg2—S6	180.0	S7—As2—S9	109.45(4)
S2—As1—S5	105.08(4)	S7—As2—S10	105.85(4)
S3—As1—S2	118.63(5)	S8—As2—S7	117.84(4)
S3—As1—S4	111.44(5)	S8—As2—S9	110.97(4)
S3—As1—S5	105.38(4)	S8—As2—S10	105.62(4)
S4—As1—S2	109.07(4)	S9—As2—S10	106.30(4)

Table S2 Selected band distances (Å) and band angles (°) for Ba₄HgAs₂S₁₀.

Symmetry codes: (i) -x+1, y, -z+3/2; (ii) x, -y+2, z+1/2; (iii) -x+1, -y+2, -z+2; (iv) -x+3/2, y-1/2, -z+3/2; (v) -x+3/2, y+1/2, -z+3/2; (vi) x, y-1, z; (vii) x, y+1, z; (vii) x, -y+2, z-1/2; (xii) x, -y+1, z-1/2; (xii) x, -y+1, z-1/2; (vii) x, -y+1, z-1/2; (vi) -x+3/2; (vi) -x

Synthesis of BaS₃

The binary material BaS_3 was synthesized by stoichiometric reaction of BaS and S element within a sealed silica tube. The tube was heated to 773 K in 10 h, maintained the temperature for 48 h, and then cooled down to room temperature by shutting off the furnace. In order to enhance the crystallinity and purity, the obtained sample was reground and the heat treatment was repeated. Eventually, yellow powder of BaS_3 was obtained. The measured powder X-ray diffraction (XRD) pattern agrees well with the simulated pattern from the reported single-crystal structure (ICSD #23637).

Figure S1. PXRD patterns of BaS₃.

Figure S2. Raman spectrum of $Ba_4HgAs_2S_{10}$.

Figure S3. Refractive index dispersion diagrams of $Ba_4HgAs_2S_{10}$.