Structural diversity of ethylzinc derivatives of 3,5-substituted pyrazoles

Szymon Komorski, ${ }^{\dagger}$ Michał K. Leszczyński, ${ }^{\dagger}, \ddagger$ Iwona Justyniak, ${ }^{\ddagger}$ and Janusz Lewiński*, ${ }^{\dagger, \dagger}$
${ }^{\dagger}$ Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
\ddagger Polish Academy of Sciences, Institute of Physical Chemistry, Kasprzaka 44/52, 01-224 Warsaw, Poland

Contents Page

1. X-ray structure determination2
2. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and $\left[{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}\right]$ HMQC NMR spectra of compounds $\mathbf{1}-\mathbf{6}$ 15
3. DOSY NMR data processing description 24
4. References 25

X-ray structure determination

The crystals were selected under Paratone-N oil, mounted on the nylon loops and positioned in the cold stream on the diffractometer. The X-ray data for complexes $\mathbf{1 , 2 , 3}$ and $\mathbf{6}$ were collected at $100(2) \mathrm{K}$ on a SuperNova Agilent diffractometer using graphite monochromated MoK α radiation $(\lambda=0.71073 \AA)$. The data were processed with CrysAlisPro. ${ }^{1}$ The X-ray data for complexes $\mathbf{4}$ and 5 were collected on a Nonius Kappa CCD diffractometer using graphite monochromated MoK α radiation $(\lambda=0.71073 \AA$). The data were processed with DENZO and SCALEPACK (HKL2000 package) ${ }^{2}$ The structures were solved by direct methods using the SHELXS-97 program and were refined by full matrix least-squares on F^{2} using the program SHELXL. ${ }^{3}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were added to the structure model at geometrically idealized coordinates and refined as riding atoms. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: (+44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk). CCDC: 2025235 (1), 2025236 (2), 2025237 (3), 2025238 (4), 2025239 (5) and 2025240 (6).

Crystal data and structure refinement for $\mathbf{1} \cdot \mathrm{PhMe}$

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

$$
\begin{aligned}
& \mathrm{C}_{49} \mathrm{H}_{76} \mathrm{~N}_{12} \mathrm{O}_{2} \mathrm{Zn}_{4} \\
& 1126.69 \\
& \text { 100(2) K } \\
& 0.71073 \AA \\
& \text { Monoclinic } \\
& \text { P 21/n } \\
& \mathrm{a}=8.1493(2) \AA \quad \mathrm{a}=90^{\circ} \\
& \mathrm{b}=17.0654(5) \AA \quad \mathrm{b}=98.620(2)^{\circ} \\
& \mathrm{c}=19.1930(4) \AA \quad \mathrm{g}=90^{\circ} \\
& \text { 2639.04(12) } \AA^{3} \\
& 2 \\
& 1.418 \mathrm{Mg} / \mathrm{m}^{3} \\
& 1.845 \mathrm{~mm}^{-1} \\
& 1180 \\
& 0.26 \times 0.18 \times 0.09 \mathrm{~mm}^{3} \\
& 2.891 \text { to } 29.510^{\circ} \text {. } \\
& -11<=\mathrm{h}<=10,-22<=\mathrm{k}<=23,-21<=\mathrm{l}<=25 \\
& 14293 \\
& 6309[\mathrm{R}(\mathrm{int})=0.0514] \\
& 99.8 \text { \% } \\
& \text { Semi-empirical from equivalents } \\
& 0.847 \text { and } 0.678 \\
& \text { Full-matrix least-squares on } \mathrm{F}^{2} \\
& 6309 \text { / } 42 \text { / } 329 \\
& 1.041 \\
& \mathrm{R} 1=0.0409, \mathrm{wR} 2=0.0844 \\
& R 1=0.0610, w R 2=0.0916 \\
& 0.547 \text { and }-0.542 \text { e. } \AA^{-3}
\end{aligned}
$$

Figure S1. Molecular structure of $\mathbf{1}$ with thermal ellipsoids set at 35% probability. Hydrogen atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: $(-x,-y,-z)$.

Table S1. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1} \cdot \mathrm{PhMe}$

$\mathrm{C} 1-\mathrm{Zn} 1$	$1.990(3)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$92.20(8)$
$\mathrm{O} 1-\mathrm{Zn} 1$	$2.2131(19)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$91.95(8)$
$\mathrm{N} 1-\mathrm{Zn} 1$	$2.006(2)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$124.46(10)$
$\mathrm{N} 3-\mathrm{Zn} 1$	$2.014(2)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$124.85(11)$
$\mathrm{N} 2-\mathrm{Zn} 2$	$2.003(2)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{O} 1$	$107.90(10)$
$\mathrm{N} 4-\mathrm{Zn} 2$	$2.008(2)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$104.78(9)$
$\mathrm{N} 5-\mathrm{Zn} 2$	$1.995(2)$	$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{N} 5$	$107.32(9)$
$\mathrm{N} 6{ }^{\prime}-\mathrm{Zn} 2$	$2.002(2)$	$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{N} 4$	$106.79(9)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.382(3)$	$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{N} 6$	$110.58(9)$
$\mathrm{N} 3-\mathrm{N} 4$	$1.382(3)$	$\mathrm{N} 4-\mathrm{Zn} 2-\mathrm{N} 6$,	$113.00(9)$
$\mathrm{N} 5-\mathrm{N} 6$	$1.378(3)$	$\mathrm{N} 4-\mathrm{Zn} 2-\mathrm{N} 5$	$110.74(8)$

Crystal data and structure refinement for $\mathbf{2}$

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=26.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F ${ }^{2}$
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{32} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{Zn}_{3}$
778.94

100(2) K
$0.71073 \AA$
Monoclinic
P 21/c
$a=7.7664(3) \AA \quad a=90^{\circ}$
$b=29.8024(12) \AA \quad b=102.299(4)^{\circ}$
$\mathrm{c}=16.0219(6) \AA \quad \mathrm{g}=90^{\circ}$
3623.3(2) \AA^{3}

4
$1.428 \mathrm{Mg} / \mathrm{m}^{3}$
$2.010 \mathrm{~mm}^{-1}$
1632
$0.27 \times 0.22 \times 0.09 \mathrm{~mm}^{3}$
3.028 to 28.598°.
$-9<=\mathrm{h}<=9,-39<=\mathrm{k}<=37,-19<=\mathrm{l}<=20$
17361
$8162[\mathrm{R}(\mathrm{int})=0.0234]$
99.8 \%

Semi-empirical from equivalents
0.835 and 0.594

Full-matrix least-squares on F^{2}
8162 / $0 / 416$
1.051
$\mathrm{R} 1=0.0296, \mathrm{wR} 2=0.0629$
$\mathrm{R} 1=0.0379, \mathrm{wR} 2=0.0654$
0.483 and -0.366 e. \AA^{-3}

Figure S2. Molecular structure of 2 with thermal ellipsoids set at 35% probability. Hydrogen atoms have been omitted for clarity.

Table S2. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 2

$\mathrm{C} 1-\mathrm{Zn} 1$	$1.991(2)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$96.46(6)$
$\mathrm{O} 1-\mathrm{Zn} 1$	$2.1849(14)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$94.73(6)$
$\mathrm{N} 1-\mathrm{Zn} 1$	$2.0123(16)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$124.75(8)$
$\mathrm{N} 3-\mathrm{Zn} 1$	$2.0185(17)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$124.74(8)$
$\mathrm{N} 2-\mathrm{Zn} 2$	$1.9788(16)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{O} 1$	$101.59(8)$
$\mathrm{N} 4-\mathrm{Zn} 2$	$1.9886(15)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$104.87(6)$
$\mathrm{N} 5-\mathrm{Zn} 2$	$1.9793(17)$	$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{N} 4$	$108.53(7)$
$\mathrm{N} 7-\mathrm{Zn} 2$	$1.9940(16)$	$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{N} 5$	$110.97(7)$
$\mathrm{C} 3-\mathrm{Zn} 3$	$1.991(2)$	$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{N} 7$	$106.50(7)$
$\mathrm{O} 2-\mathrm{Zn} 3$	$2.1908(14)$	$\mathrm{N} 4-\mathrm{Zn} 2-\mathrm{N} 7$	$115.52(7)$
$\mathrm{N} 6-\mathrm{Zn} 3$	$2.0118(17)$	$\mathrm{N} 5-\mathrm{Zn} 2-\mathrm{N} 7$	$105.44(7)$
$\mathrm{N} 8-\mathrm{Zn} 3$	$2.0196(17)$	$\mathrm{O} 2-\mathrm{Zn} 3-\mathrm{N} 6$	$99.37(7)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.378(2)$	$\mathrm{O} 2-\mathrm{Zn} 3-\mathrm{N} 8$	$96.88(6)$
$\mathrm{N} 3-\mathrm{N} 4$	$1.377(2)$	$\mathrm{C} 3-\mathrm{Zn} 3-\mathrm{N} 6$	$126.09(9)$
$\mathrm{N} 5-\mathrm{N} 6$	$1.377(2)$	$\mathrm{C} 3-\mathrm{Zn} 3-\mathrm{N} 8$	$120.29(9)$
$\mathrm{N} 7-\mathrm{N} 8$	$1.375(2)$	$\mathrm{C} 3-\mathrm{Zn} 3-\mathrm{O} 2$	$103.88(8)$

Crystal data and structure refinement for $\mathbf{3}$

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{40} \mathrm{H}_{70} \mathrm{~N}_{8} \mathrm{Zn}_{3}$
859.21

100(2) K
0.71073 Å

Monoclinic
P 21/n
$a=14.0604(4) \AA \quad a=90^{\circ}$
$\mathrm{b}=18.0359(6) \AA \quad \mathrm{b}=92.433(3)^{\circ}$
$\mathrm{c}=17.1111(6) \AA \quad \mathrm{g}=90^{\circ}$
4335.3(2) \AA^{3}

4
$1.316 \mathrm{Mg} / \mathrm{m}^{3}$
$1.683 \mathrm{~mm}^{-1}$
1824
$0.26 \times 0.16 \times 0.12 \mathrm{~mm}^{3}$
2.960 to 27.000°.
$-17<=\mathrm{h}<=17,-23<=\mathrm{k}<=22,-21<=\mathrm{l}<=21$
24508
$9372[\mathrm{R}(\mathrm{int})=0.0544]$
99.8 \%

Semi-empirical from equivalents
0.818 and 0.733

Full-matrix least-squares on F^{2}
9372 / 0/478
1.053
$\mathrm{R} 1=0.0475, \mathrm{wR} 2=0.1028$
$\mathrm{R} 1=0.0799, \mathrm{wR} 2=0.1212$
0.951 and -0.756 e. \AA^{-3}

Figure S3. Molecular structure of $\mathbf{3}$ with thermal ellipsoids set at 35% probability. Hydrogen atoms have been omitted for clarity.

Table S3. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 3

$\mathrm{C} 1-\mathrm{Zn} 1$	$1.969(3)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$128.35(13)$
$\mathrm{N} 1-\mathrm{Zn} 1$	$1.973(3)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$122.99(13)$
$\mathrm{N} 3-\mathrm{Zn} 1$	$1.991(2)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$107.59(10)$
$\mathrm{N} 2-\mathrm{Zn} 2$	$2.001(2)$	$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{N} 4$	$109.68(10)$
$\mathrm{N} 4-\mathrm{Zn} 2$	$1.982(3)$	$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{N} 5$	$107.94(11)$
$\mathrm{N} 5-\mathrm{Zn} 2$	$1.978(3)$	$\mathrm{N} 2-\mathrm{Zn} 2-\mathrm{N} 7$	$109.80(11)$
$\mathrm{N} 7-\mathrm{Zn} 2$	$1.989(3)$	$\mathrm{N} 4-\mathrm{Zn} 2-\mathrm{N} 5$	$113.14(11)$
$\mathrm{C} 3-\mathrm{Zn} 3$	$1.965(3)$	$\mathrm{N} 4-\mathrm{Zn} 2-\mathrm{N} 7$	$106.91(11)$
$\mathrm{N} 6-\mathrm{Zn} 3$	$2.000(2)$	$\mathrm{N} 5-\mathrm{Zn} 2-\mathrm{N} 7$	$109.36(10)$
$\mathrm{N} 8-\mathrm{Zn} 3$	$1.980(3)$	$\mathrm{C} 3-\mathrm{Zn} 3-\mathrm{N} 6$	$124.19(13)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.381(3)$	$\mathrm{N} 6-\mathrm{Zn} 3-\mathrm{N} 8$	$128.10(13)$
$\mathrm{N} 3-\mathrm{N} 4$	$1.391(3)$		$106.99(10)$
$\mathrm{N} 5-\mathrm{N} 6$	$1.390(3)$		
$\mathrm{N} 7-\mathrm{N} 8$	$1.390(3)$		

Crystal data and structure refinement for 4

Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{46 \cdot 24} \mathrm{~N}_{4} \mathrm{Zn}_{2}$
Formula weight	545.69
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 21/c
Unit cell dimensions	$\mathrm{a}=10.9820(15) \AA \quad \mathrm{a}=90^{\circ}$
	$\mathrm{b}=18.677(3) \AA \quad \mathrm{d}=109.536(8)^{\circ}$
	$\mathrm{c}=14.857(2) \AA \quad \mathrm{g}=90^{\circ}$
Volume	2871.9(7) \AA^{3}
Z	4
Density (calculated)	$1.262 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.689 \mathrm{~mm}^{-1}$
F(000)	1161
Crystal size	$0.22 \times 0.16 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	2.250 to 25.414°.
Index ranges	$-12<=\mathrm{h}<=12,-22<=\mathrm{k}<=22,-9<=1<=17$
Reflections collected	4642
Independent reflections	$4642[\mathrm{R}(\mathrm{int})=0.0563]$
Completeness to theta $=25.414^{\circ}$	88.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.845 and 0.730
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4642 / 202 / 340
Goodness-of-fit on F^{2}	1.141
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.1877, \mathrm{wR} 2=0.4182$
R indices (all data)	$\mathrm{R} 1=0.2046, \mathrm{wR} 2=0.4252$
Largest diff. peak and hole	1.268 and - -1.423 e. A^{-3}

This compound crystallizes as twins. The ratio of the twin components being $0.721(11): 0.279(11)$.

Figure S4. Molecular structure of $\mathbf{4}$ with thermal ellipsoids set at 35% probability. Hydrogen atoms have been omitted for clarity.

Due to the poor quality of the data bond lengths and angle parameters are not analyzed.

Crystal data and structure refinement for 5

Empirical formula	$\mathrm{C}_{64} \mathrm{H}_{120} \mathrm{~N}_{8} \mathrm{O}_{3} \mathrm{Zn}_{4}$
Formula weight	1311.15
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	Triclinic
Space group	P 1
Unit cell dimensions	$\mathrm{a}=11.89(2) \AA \quad \mathrm{a}=72.50(6)^{\circ}$
	$\mathrm{b}=15.35(2) \AA \quad \mathrm{A}=88.38(8)^{\circ}$
	$\mathrm{c}=22.38(5) \AA \quad \mathrm{g}=69.64(3)^{\circ}$
Volume	3639(11) \AA^{3}
Z	2
Density (calculated)	$1.197 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.347 \mathrm{~mm}^{-1}$
F(000)	1408
Crystal size	$0.19 \times 0.17 \times 0.09 \mathrm{~mm}^{3}$
Theta range for data collection	1.49 to 25.698°.
Index ranges	$-13<=\mathrm{h}<=13,-17<=\mathrm{k}<=17,-26<=1<=26$
Reflections collected	14273
Independent reflections	$12182[\mathrm{R}($ int $)=0.0691]$
Completeness to theta $=24.699^{\circ}$	98.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.886 and 0.774
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	12182 / 6 / 741
Goodness-of-fit on F^{2}	1.088
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.1088, \mathrm{wR} 2=0.3109$
R indices (all data)	$\mathrm{R} 1=0.1387, \mathrm{wR} 2=0.3274$
Largest diff. peak and hole	2.718 and -1.560 e. \AA^{-3}

This compound crystallizes as twins. The ratio of the twin components being 0.558(7): 0.442(7).

Figure S5. Molecular structure of $\mathbf{5}$ with thermal ellipsoids set at 35% probability. Hydrogen atoms have been omitted for clarity.

Table S4. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 5

$\mathrm{C} 1-\mathrm{Zn} 1$	$2.011(12)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$89.8(3)$
$\mathrm{O} 1-\mathrm{Zn} 1$	$2.297(8)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$87.0(3)$
$\mathrm{N} 1-\mathrm{Zn} 1$	$2.039(9)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$126.4(4)$
$\mathrm{N} 3-\mathrm{Zn} 1$	$2.037(9)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$133.8(4)$
$\mathrm{C} 3-\mathrm{Zn} 2$	$2.000(11)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{O} 1$	$96.1(4)$
$\mathrm{O} 1-\mathrm{Zn} 2$	$2.307(8)$	$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 3$	$99.5(4)$
$\mathrm{N} 2-\mathrm{Zn} 2$	$2.027(10)$	$\mathrm{O} 1-\mathrm{Zn} 2-\mathrm{N} 2$	$86.7(3)$
$\mathrm{N} 4-\mathrm{Zn} 2$	$2.042(9)$	$\mathrm{O} 1-\mathrm{Zn} 2-\mathrm{N} 4$	$90.0(3)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.406(12)$	$\mathrm{C} 3-\mathrm{Zn} 2-\mathrm{N} 2$	$133.9(4)$
$\mathrm{N} 3-\mathrm{N} 4$	$1.402(12)$	$\mathrm{C} 3-\mathrm{Zn} 2-\mathrm{N} 4$	$126.0(4)$

Crystal data and structure refinement for 6

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=26.9978^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F ${ }^{2}$
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Zn}_{2}$
567.39
100.01(10) K
0.71073 Å

Monoclinic
C $12 / \mathrm{c} 1$
$a=12.2907(9) \AA \quad a=90^{\circ}$
$b=16.3872(10) \AA \quad b=109.417(8)^{\circ}$
$\mathrm{c}=13.4133(11) \AA \quad \mathrm{g}=90^{\circ}$
2547.9(3) \AA^{3}

4
$1.4790 \mathrm{Mg} / \mathrm{m}^{3}$
$1.913 \mathrm{~mm}^{-1}$
1186.8169
$0.32 \times 0.24 \times 0.12 \mathrm{~mm}^{3}$
3.22 to 27.00°.
$-15<=\mathrm{h}<=15,-21<=\mathrm{k}<=11,-14<=\mathrm{l}<=16$
5259
2737 [$\mathrm{R}(\mathrm{int})=0.0454]$
98.35 \%

Semi-empirical from equivalents
0.795 and 0.582

Full-matrix least-squares on F^{2}
2737/0/155
1.0447
$\mathrm{R} 1=0.0564, \mathrm{wR} 2=0.1447$
$\mathrm{R} 1=0.0653, \mathrm{wR} 2=0.1602$
1.5187 and -0.8272 e. \AA^{-3}

Figure S6. Molecular structure of 6 with thermal ellipsoids set at 35% probability. Hydrogen atoms have been omitted for clarity. Symmetry transformations used to generate equivalent atoms: $(-x+3 / 2,-y+1 / 2,-z)$.

Table S5. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for 6

$\mathrm{C} 1-\mathrm{Zn} 1$	$1.981(3)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$90.69(10)$
$\mathrm{O} 1-\mathrm{Zn} 1$	$2.220(2)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$94.28(10)$
$\mathrm{N} 1-\mathrm{Zn} 1$	$2.025(3)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$122.90(13)$
$\mathrm{N} 2-\mathrm{Zn} 1$	$1.996(3)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$123.34(13)$
$\mathrm{N} 1-\mathrm{N} 2$,	$1.373(4)$	$\mathrm{C} 1-\mathrm{Zn} 1-\mathrm{O} 1$	$109.31(12)$
		$\mathrm{N} 1-\mathrm{Zn} 1-\mathrm{N} 2$	$106.86(11)$

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S9. HMQC NMR spectrum of $\mathbf{1}\left(\mathrm{C}_{6} \mathrm{D}_{6}.\right)$

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $2\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure $\mathbf{S 1 1 .}{ }^{13} \mathrm{C}$ NMR spectrum of compound $2\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S12. HMQC NMR spectrum of $2\left(\mathrm{C}_{6} \mathrm{D}_{6}.\right)$

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S14. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S15. HMQC NMR spectrum of $\mathbf{3}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S17. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $4\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S18. HMQC NMR spectrum of $4\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S20. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $5\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S21. HMQC NMR spectrum of $5\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$

Figure S22. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{6}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S23. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{6}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$.

Figure S24. HMQC NMR spectrum of $6\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$

DOSY NMR data processing description

All of the DOSY NMR data processing and analysis was conducted in accordance to the literature reports concerning the usage of the calibration curves of the inert internal standard molecule ($1,2,3,4-$ tetraphenylnaphthalene (TPhN) was selected) in order to accurately determine the molecular weight of the analyte. ${ }^{4}$ Moreover, we have applied the van-der-Waals radii-based correction in order to account for the underestimation of MW due to the presence of heavy atoms, according to the literature methods. ${ }^{5}$

Initially the diffusion coefficients (D) of the TPhN reference were identified and averaged. Then for every signal originated from the analyte the normalised diffusion ($\mathrm{D}_{\text {norm }}$) coefficient was calculated based on the literature data, followed by the calculation of the molecular weight ($\mathrm{MW}_{\text {det }}$) using the external DSE (Dissipated Spheres + Ellipsoids) calibration curve. ${ }^{4}$

The van-der-Waals radii-based correction have been applied to the obtained $\mathrm{MW}_{\text {det }}$ values following the procedures described in the literature. ${ }^{5}$ Initially the potential candidate structures were selected and their Molar van-der-Waals Density MD_{W} have been calculated. Next the correction factor has been calculated using the calibration curve determined in the previous literature report, ${ }^{5}$ which allowed for calculation of the corrected molecular weight values ($\mathrm{MW}_{\text {det,corr }}$).

The example data illustrating the procedure are provided in Table S1 (for sample DOSY-2).
Table S6. DOSY NMR data processing for sample DOSY-2.

No.	ppm range		$\mathrm{D}\left[\mathrm{m}^{2} / \mathrm{s}\right]$	$\log \mathrm{D}_{\text {norm }}$	$\mathrm{MW}_{\text {det }}\left[\mathrm{g} \mathrm{mol}^{-1}\right]$	comments
1	7.898	7.825	$6.509 \mathrm{E}-10$	-	-	TPhN reference
2	7.277	7.202	$6.277 \mathrm{E}-10$	-	-	TPhN reference
3	7.093	7.014	$6.398 \mathrm{E}-10$	-	-	TPhN reference
4	7.004	6.930	$6.723 \mathrm{E}-10$	-	-	TPhN reference
5	6.879	6.787	$6.443 \mathrm{E}-10$	-	-	TPhN reference
6	6.738	6.659	$6.478 \mathrm{E}-10$	-	-	TPhN reference
7	3.394	3.251	$6.479 \mathrm{E}-10$	-9.166	502	CHCH_{3} (pyrazole)
8	1.739	1.619	$6.599 \mathrm{E}-10$	-9.158	487	$\mathrm{CH}_{2} \mathrm{CH}$
3						

References

1 Agilent Technologies, CrysAlisPro, Version 1.171.35.21b
2 Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326.
3 Sheldrick, G. M., Acta Cryst. 2008, 64A, 112-122.
4 R. Neufeld and D. Stalke, Chem. Sci., 2015, 6, 3354-3364.
5 A. K. Kreyenschmidt, S. Bachmann, T. Niklas and D. Stalke, ChemistrySelect, 2017, 2, 6957-6960.

