Supporting Information

Modulation of CO₂ Adsorption in Novel Pillar-layered MOFs Based on Carboxylatepyrazole Flexible Linker

Andres Lancheros^{1,2,3}, Subhadip Goswami³, Mohammad Rasel Mian³, Xuan Zhang³, Ximena Zarate⁴, Eduardo Schott^{1,2*}, Omar K. Farha,³ Joseph T. Hupp^{3*}

¹ Departamento de Química Inorgánica, Facultad de Química y Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860,

Santiago, Chile

²ANID -Millennium Science Initiative Program- Millennium Nuclei on Catalytic Process Towards Sustainable Chemistry (CSC), Chile ³ Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States

⁴ Instituto de Ciencias Químicas Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile.

Synthesis and Characterization of H₂L

The linker (H₂L) was synthesized in two steps according to previous reports^{1,2}

i) 5 days. ii) AcOH, EtOAc, 4-hydrazinobenzoic acid, 24 h, reflux Scheme 1. Synthesis of H_2L

Step 1. Synthesis of 3,5-diacetylheptane-2,6-dione (P).²

In a round-bottomed flask of 100 mL, a mixture of acetylacetone (20.00 mL, 0.200 mol) and formaldehyde (37% aqueous solution, 13.50 mL, 0.490 mol) was stirred at 1000 rpm for 5 days. When completed, two phases were formed, on the top a light-yellow aqueous layer (~10 mL) and on the bottom gold-colored organic layer (~40 mL). The mixture was separated using a separating funnel. The organic layer was dried over MgSO₄, an equal volume of diethyl ether was added and then it was cooled in an ice-ethanol bath to produce white solid (P) (**Scheme 1**). The product was filtered and washed three times with ethyl ether. Finally, it was dried in a vacuum oven at 60 °C for 12 hours.

Yield: 30%. ¹**H NMR (**400 MHz, CDCl₃, 298K): δ/ppm= 3.63 (t, *J*_{HH}=6.21 Hz, 2H, H₃), 2.25 (t, *J*_{HH}=6,10 Hz, 2H, H₂), 2.18 (s, 12H, H_{7.8}). ¹³**C NMR {**¹**H**} (100 MHz, CDCl₃, 298K): δ/ppm=

203.69 (C_{4,5}), 64.96 (C₃), 29.69 (C₇,C₈), 25.04 (C₂).**DEPT-135** (100 MHz, CDCl₃, 298 K): δ /ppm = 64.84 (C₃), 29.57 (C_{7,8}), 24.92 (C₂). ¹H,¹³C-HSQC (400 MHz/100 MHz, CDCl₃, 298 K): δ (¹H)/ δ (¹³C) = 3.63/64.96 (H₃/C₃), 2.25/25.01 (H₂/C₂), 2.19/29.72 (H_{7,8}/C_{7,8}). ¹H,¹³C-HMBC (400 MHz/100 MHz, CDCl₃, 298 K): δ (¹H)/ δ (¹³C) = 2.18/203.69 (H_{7,8}/C_{4,5}). **FT-IR (KBr):** v/cm⁻¹= 3402.43 (w), 1689.64 (m), 1427.32 (w), 1365.60 (w), 1319.31 (w), 1149.57 (m), 1080.14 (w), 1041.56 (w), 956.59 (s), 879.54 (w), 810.10 (s), 732.95 (m), 648.08 (m), 594.08 (s), 555.50 (s), 493.78 (s), 493.78 (s), 362.02 (m), 324.04 (m) **HRMS(HESI):** m/z [M+H]⁺ calculated for C₁₁H₁₆O₄ (213.11), found 213.1121. **UV** (nm): 291.

Figure S1. 400 MHz ¹H NMR spectrum of P in CDCI₃

Figure S3. 400 MHz DEPT-135 NMR spectrum of P in CDCI₃

Figure S4. 400 MHz HSQC NMR spectrum of P in CDCI₃

Figure S5. 400 MHz HMBC NMR spectrum of P in CDCI₃

Figure S6. FT-IR Spectrum of P

Figure S8. UV-Vis Spectrum of P

Step 2. Synthesis of Linker H₂L

Relative Abundance

In a 250 mL two- neck round bottom flask, the compound P(2.50 g, 0.012 mol) was dissolved in ethyl acetate (125 mL) and acetic acid (25 mL). The mixture was left under reflux and stirring for one hour until complete dissolution. After cooling down to room temperature, 4-hydrazinobenzoic acid (3.90 g, 0.026 mol) was added and then it was kept under reflux and stirring for 24 hours. A light pink product was filtered, washed with water and ethyl acetate three times each and dried in a vacuum oven at 60 °C for 12 hours.

Yield: 83%. ¹**H NMR (**400 MHz, DMSO-d₆, 298K): δ/ppm= 13.02 (s, 2H, H₃₂), 8.03 (d, *J*_{HH}=8.60 Hz, 4H, H_{24,26}), 7.62 (d, *J*_{HH}=8.60 Hz, 4H, H_{23,27}), 3.54 (s, 2H, H₂), 2.29 (s, 6H, H₁₂), 2.07 (s, 6H, H₁₃). ¹³**C** NMR {¹H} (100 MHz, DMSO-d₆, 298K): δ /ppm= 166.74 (C₃₁), 148.14 (C₄), 143.19 (C₁₆), 136.19 (C₇), 130.30 (C_{24,26}), 128.43 (C₂₅), 123.21 (C_{23,27}), 116.63 (C₃), 17.59 (C₂), 12.14 (C₁₃), 11.21(C₁₂). **DEPT-135** (100 MHz, DMSO-d₆, 298 K): δ /ppm 130.75 (C_{24,26}), 123.65 (C_{23,27}), 18.03 (C₂), 12.58 (C₁₃), 11.65(C₁₂). ¹H,¹³C-HSQC (400 MHz/100 MHz, DMSO-d₆, 298 K): δ (¹H)/ δ (¹³C) = 8.03/130.31 (H_{24,26}/C_{24,26}), 7.62/123.22 (H_{23,27}/C_{23,27}), 3.54/17.60 (H₂/C₂), 2.29/11.18 (H₁₂/C₁₂), 2.07/12.12 (H₁₃/C₁₃). ¹H,¹³C-HMBC (400 MHz/100 MHz, DMSO-d₆, 298 K): δ (¹H)/ δ (¹³C) = 8.03/143.20 (H_{24,26}/C₁₆), 7.62/128.41 (H_{23,27}/C₂₅), 3,54/116.65, 136.18, 148.13 (H₂/C_{3,7,4}), 2.29/116.65, 136.18 (H₁₂/C_{3,7}), 2.07/116.65, 148.13 (H₁₃/C_{3,4}). **FT-IR (KBr)**: v/cm⁻¹= 3672.47 (w), 3402.43 (w), 2924.09 (w), 2522.89 (w), 2036.83 (w), 1705.07 (s), 1604.77 (s), 1512.19 (m), 1481.33 (w), 1427.32 (s), 1373.32 (s), 1273.02 (s), 1172.72 (m), 1103.28 (m), 1064.71 (w), 1018.41 (w), 902.69 (m), 864.11 (m), 810.10 (w), 771.53 (m), 694.37 (m), 570.93 (m), 540.07 (m), 493.78 (w), 408.91 (w), 339.47 (w) HRMS(HESI): m/z [M]⁺ calculated for C₂₅H₂₄N₄O₄ (444.18), found 445.1868. **UV** (nm): 294.

Figure S9. 400 MHz ¹H NMR spectrum of H₂L in DMSO-d₆.

Figure S10. 400 MHz ^{13}C NMR spectrum of H_2L in DMSO-d_6.

Figure S11. 400 MHz DEPT-135 NMR spectrum of H₂L in DMSO-d₆.

Figure S12. 400 MHz HSQC NMR spectrum of H₂L in DMSO-d₆.

Figure S13. 400 MHz HMBC NMR spectrum of H_2L in DMSO-d₆.

Figure S16. UV-Vis Spectrum of H_2L

Figure S17. Physical aspect for a) [Zn^{II}(L)BPY], b) [Cu^{II}(L)BPY], and c) [Cu^{II}(L)DABCO] . Crystals images using an optical microscope for d) [Zn^{II}(L)BPY], e) [Cu^{II}(L)BPY], and f) [Cu^{II}(L)DABCO].

Identification code	[Zn ^{II} (L)BPY]	[Cu ^{II} (L)BPY]	[Cu ^{II} (L)DABCO]
Empirical formula	$C_{36}H_{44}ZnN_7O_7$	$C_{30}H_{26}CuN_5O_4$	$C_{31}H_{36}CuN_6O_4$
Formula weight	752.189	584.10	620.20
Temperature/K	99.98(18)	100.02	100.01
Crystal system	monoclinic	monoclinic	monoclinic
Space group	C2/m	C2/m	P2 ₁ /n
a/Å	18.3045(4)	18.1598(14)	9.3159(2)
b/Å	24.0896(6)	24.203(2)	26.0056(4)
c/Å	14.0301(3)	13.9450(11)	13.1078(2)
α3.9	90	90	90
β0 9	97.598(2)	97.387(3)	101.233(2)
γ7.3	90	90	90
Volume/Å ³	6132.2(2)	6078.4(8)	3114.73(10)
Z	8	8	4
ρ _{calc} g/cm³	1.629	1.277	1.323
µ.mm⁻¹	0.870	0.759	1.353
F(000)	3164.1	2416.0	1300.0
Crystal size/mm ³	0.3 × 0.2 × 0.1	0.20×0.10×0.05	0.112 × 0.073 × 0.028
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	CuKα (λ = 1.54184)
2O range for data collection/°	3.84 to 67.64	2.818 to 60.2	6.798 to 146.71°
Index ranges	-27 ≤ h ≤ 21, -33 ≤ k ≤ 36, -21 ≤ l ≤ 20	-25 ≤ h ≤ 25, -34 ≤ k ≤ 33, -19 ≤ l ≤ 19	-11 ≤ h ≤ 9, -31 ≤ k ≤ 31, -16 ≤ l ≤ 16
Reflections collected	43086	60389	21276
Independent	10944 [R _{int} = 0.0256,	9118 [R _{int} = 0.0366,	6032 [R _{int} = 0.0488,
reflections	R _{sigma} = 0.0278]	R _{sigma} = 0.0393]	R _{sigma} = 0.0444]
Data/restraints/para meters	10944/0/415	9118/75/398	6032/0/389
Goodness-of-fit on F ²	1.012	1.036	1.084
Final R indexes [I>=2eters	R ₁ = 0.0466, wR ₂ = 0.1267	R ₁ = 0.0555, wR ₂ = 0.1492	R1 = 0.0521, wR ₂ = 0.1301
Final R indexes [all data]	R ₁ = 0.0619, wR ₂ = 0.1352	R ₁ = 0.0842, wR ₂ = 0.1641	R1 = 0.0614, wR ₂ = 0.1376
Largest diff. peak/hole / e Å- ³	0.89/-0.76	0.95/-0.56	0.65/-0.67

 Table S1. Crystal data and structure refinement for pillar-MOFs

Figure S18. PXRD patterns for [Cu^{II}(L)BPY]. Linker H₂L (black); simulated (red); as-synthesized (blue); activated at 120°C x 16h (green); and after CO₂ adsorption (purple).

Figure S19. TGA profiles for a) [Zn^{II}(L)BPY], b) [Cu^{II}(L)BPY], and c) [Cu^{II}(L)DABCO]

[Zn^{II}(L)BPY]

a)

Figure S20. FT-IR spectra for a) [Zn^{II}(L)BPY], b) [Cu^{II}(L)BPY], and c) [Cu^{II}(L)DABCO]

Figure S22. Studied MOFs and the adsorbed CO_2 molecules through the free nitrogen. [Zn^{II}(L)BPY] with a) 2 CO₂ molecules and b) 4 CO₂ molecules. [Cu^{II}(L)BPY] with c) 2 CO₂ molecules and d) 4 CO₂ molecules. [Cu^{II}(L)DABCO] with e) 2 CO₂ molecules and f) 4 CO₂ molecules.

Table S2. Uptake of CO₂ at different temperatures for [Zn^{II}(L)BPY], [Cu^{II}(L)BPY], and [Cu^{II}(L)DABCO]

Temp	mp [Zn ^{II} (L)BPY]			[Cu ^{II} (L)BPY]			[Cu ^{II} (L)DABCO]					
(K)	(cm ³ /g)	(mg/g)	(mmol/g)	(wt%)	(cm ³ /g)	(mg/g)	(mmol/g)	(wt%)	(cm ³ /g)	(mg/g)	(mmol/g)	(wt%)
195	42.18	83.52	1.90	8.35	91.68	181.53	4.12	18.15	156.33	309.53	7.03	30.95
273	17.14	33.94	0.77	3.39	26.69	52.83	1.20	5.28	36.38	72.03	1.64	7.20
298	13.53	26.79	0.61	2.68	19.88	39.36	0.89	3.94	32.67	64.69	1.47	6.47

Table S3. Morokuma-Ziegler EDA in Kcal/mol for the structures optimized with CO₂ proximal to the free nitrogen.

		ΔE _{Pauli}	ΔE_{Elec}	ΔE_{Orb}	ΔE_{Dis}	ΔE _{Int}
	2 CO ₂	12.9	-7.9	-2.7	-10.8	-8.5
	4 CO ₂	80.7	-42.7	-26.2	-22.2	-10.3
	2 CO ₂	14.1	-8.2	-3.9	-11.1	-9.1
	4 CO ₂	26.9	-16.5	-6.7	-21.5	-17.8
[Cu ^{II} (L)DABCO]	2 CO ₂	14.0	-7.8	-6.3	-11.7	-11.8
	4 CO ₂	21.4	-12.0	-7.4	-21.0	-18.9

Table S4. Elemental analysis of the MOFs

	Theoretical (%)	Experimental (%)
[Zn ^{II} (L)BPY]	C: 61.4, H: 4.4, N: 11.9	C: 59.9, H: 4.1, N: 11.6
[Cu ^{II} (L)BPY]	C: 61.6, H: 4.45, N: 11.9	C: 55.7, H: 3.96, N: 11.4
[Cu ^{II} (L)DABCO]	C: 59.9, H: 5.8, N: 13.54	C: 59.89, H: 4.24, N: 11.63

References

- (1) Tomar, K.; Verma, A.; Bharadwaj, P. K. Exploiting Dimensional Variability in Cu Paddle-Wheel Secondary Building Unit Based Mixed Valence Cu(II)/Cu(I) Frameworks from a Bispyrazole Ligand by Solvent/PH Variation. *Cryst. Growth Des.* **2018**, *18* (4), 2397–2404. https://doi.org/10.1021/acs.cgd.8b00002.
- (2) Burton, S.; Fronczek, F. R.; Maverick, A. W. 3,5-Diacetyl-Heptane-2,6-Dione. *Acta Crystallogr. Sect. E Struct. Reports Online* **2007**, *63* (7), 0–5. https://doi.org/10.1107/S1600536807026323.