Ni(OH)₂ nanodots decorated Co-Co LDH/C hollow nanocage for high performance supercapacitor

Yuan Yang^a, Xiuqin Wang^b, Feifei Huang^a, Jialu Zhao^c, Xiuhua Wang^a*

^aCollege of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Wuhu 241002, China

^bShandong Provincial Cancer Hospital and Institute, Jinan 250117, China

^cCentral South University of Forestry and Technology, Changsha 410004, China

Fig. S1. (a) SEM and (b) TEM images of Ni(OH)₂.

Fig. S2. SEM images of (a) Co-Co LDH/C/Ni(OH)₂-10, (b) Co-Co LDH/C/Ni(OH)₂-20, (c) Co-Co LDH/C/Ni(OH)₂-30, (d) Co-Co LDH/C/Ni(OH)₂-40, (e) Co-Co LDH/C/Ni(OH)₂-50 and (f) Co-Co LDH/C/Ni(OH)₂-60.

Fig. S3. EDS spectra of (a) Co-Co LDH/C, (b) Ni(OH)₂, (c) Co-Co LDH/C/Ni(OH)₂-10, (d) Co-Co LDH/C/Ni(OH)₂-20, (e) Co-Co LDH/C/Ni(OH)₂-30, (f) Co-Co LDH/C/Ni(OH)₂-40, (g) Co-Co LDH/C/Ni(OH)₂-50 and (h) Co-Co LDH/C/Ni(OH)₂-60.

Fig. S4. XPS survey spectra of (a) Ni(OH)₂ and (b) Co-Co LDH/C.

Fig. S5. N₂ adsorption-desorption isotherms and corresponding pore size distribution plots (inset) of (a) Ni(OH)₂ nanodots, (b) Co-Co LDH/C and Co-Co LDH/C@Ni(OH)₂-50.

Fig. S6. CV curves at different scanning speeds for (a) Co-Co LDH, (c) Co-Co LDH/C, (e) Ni(OH)₂ and (g) Co-Co LDH/Ni(OH)₂-50; GCD profiles at various current densities for (b) Co-Co LDH, (d) Co-Co LDH/C, (f) Ni(OH)₂ and (h) Co-Co LDH/Ni(OH)₂-50.

Fig. S7. CV curves at different scanning speeds for (a) Co-Co LDH/Ni(OH)₂-10, (c) Co-Co LDH/Ni(OH)₂-20, (e) Co-Co LDH/Ni(OH)₂-30, (g) Co-Co LDH/Ni(OH)₂-40, (i) Co-Co LDH/Ni(OH)₂-50 and (k) Co-Co LDH/Ni(OH)₂-60; GCD profiles at various current densities for (b) Co-Co LDH/Ni(OH)₂-10, (d) Co-Co LDH/Ni(OH)₂-20, (f) Co-Co LDH/Ni(OH)₂-30, (h) Co-Co LDH/Ni(OH)₂-40, (j) Co-Co LDH/Ni(OH)₂-50 and (l) Co-Co LDH/Ni(OH)₂-60.

Fig. S8 (a) the TEM image of Co-Co LDH/Ni(OH) $_2$ -50 electrode after 3000 cycling; (b) the XRD pattern of Co-Co LDH/Ni(OH) $_2$ -50 electrode after 3000 cycling.

Fig. S9. The capacitive contribution to charge storage of Co-Co LDH at different scan rates of (a) 0.1, (b) 0.2, (c) 0.4, (d) 0.6, (e) 0.8, (f) 1, (g) 2 and (h) 4 mV s⁻¹.

Fig. S10. The capacitive contribution to charge storage of Co-Co LDH/C/Ni(OH)₂-50 at different scan rates of (a) 0.1, (b) 0.2, (c) 0.4, (d) 0.6, (e) 0.8, (f) 1, (g) 2 and (h) 4 mV s⁻¹.

Fig. S11. Capacitive contribution of charge storage of Co-Co LDH/Ni(OH)₂ composites with different Ni(OH)₂ contents (0, 10, 30 and 50 wt.%) at a scan speed of 0.6mV s⁻¹.

Fig. S12. (a) CV curves at various scan rates, (b) GCD profiles at various current densities for AC. (c) Cyclic voltammograms of AC and Co-Co LDH/C/Ni(OH)₂-50 in three electrode configurations against SCE electrode showing corresponding operational voltage window. (d) GCD curve of Co-Co LDH/C/Ni(OH)₂-50//AC Hybrid supercapacitor under different potential windows. Two pieces of Co-Co LDH/C/Ni(OH)₂-50//AC (e) tandem and (f) parallel GCD curves compared to a single Co-Co LDH/C/Ni(OH)₂-50//AC.

Electrode material	Specific capacitance	Capacitance Retention	Cycling stability	References
Ni(OH)2@Co/C	952 F g^{-1} at 0.5A g^{-1}	80% (from 0.5-10 A g ⁻¹)	—	[1]
CNT@Ni(OH) ₂	1251 F g ⁻¹ at 1A g ⁻¹	78.4% (from 1-100 A g ⁻¹)	75% after 2000 cycles	[2]
Ni _x Co _{1-x} (OH) ₂	1000 F g^{-1} at 5 mV s^{-1}	69.9% (from 5-500 mV s ⁻¹)	100% after 1000 cycles	[3]
ZnCo ₂ O ₄ @Ni(OH) ₂	1021 F g^{-1} at 1 mA cm ⁻²	55.3% (from 1-10 mA cm ⁻²)	50.1% after 5000 cycles	[4]
Ni(OH)2/CoO/rGO	1317 F g^{-1} at 2 A g^{-1}	66% (from 2-10 A g ⁻¹)	84.8% after 2000 cycles	[5]
Ni(OH) ₂ /a-GCA	1342.5 F g^{-1} at 1 A g^{-1}	78.4% (from 1-10 A g^{-1})	79% after 5000 cycles	[6]
Со-Со	1426 F g ⁻¹ at 1 A g ⁻¹	90.2% (from 1-10 A g ⁻¹)	81.1% after 3000 cycles	Our work
LDH/C/Ni(OH)2-50				

Table S1. Comparison of our work with previously reported work

References:

[1] X. Li, Y. Qiao, C. Wang, T. Shen, X. Zhang, H. Wang, Y. Li and W. Gao, *J. Alloy. Compd.*, 2019, **770**, 803-812.

[2] Y. Yang, Y. Zhou, Y. An, Q. Zhang, X. Wang, X. Yang and Z. Hu, J. Phys. Chem. Solids, 2018, **119**, 126-137.

[3] J.-C. Chen, C.-T. Hsu and C.-C. Hu, J. Power Sources, 2014, 253, 205-213.

[4] X. Han, Y. Yang, J.-J. Zhou, Q. Ma, K. Tao and L. Han, Chem.-Eur. J., 2018, 24, 18106-18114.

[5] L. Jiang, R. Zou, W. Li, J. Sun, X. Hu, Y. Xue, G. He and J. Hu, J. Mater. Chem. A, 2013, 1, 478-481.

[6] Y. Zhang, W. Fan, H. Lu and T. Liu, *Electrochim. Acta*, 2018, **283**, 1763-1772.