Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2020

Supporting Information

for

Synthesis, reactivity and catalytic activity of Au-PAd₃ complexes

Vladislav A. Voloshkin,^a Marina Saab,^a Kristof Van Hecke,^a Sii Hong Lau,^b Bradley P. Carrow,^b and Steven P. Nolan *^a

 ^a Department of Chemistry and Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3, 9000 Ghent, Belgium
^b Department of Chemistry, Princeton University Princeton, NJ 08544 USA
*E- mail: Steven.Nolan@ugent.be

Table of Contents

Catalytic tests	S2
NMR spectra	S4
References	S54

Catalytic tests

Hydration of 3-hexyne

[Au(PAd₃)X], 3-hexyne (199 μ L, 1.75 mmol), H₂O (34.6 μ L, 1.925 mmol) and NBu₄OTf (34.3 mg, 0.0875 mmol) were mixed in a 2 mL glass screw-top vial. Reaction mixture was stirred (rpm 1500) at 30°C. The progress of the reaction was monitored by ¹H NMR. The conversion was calculated from the integral intensities of the -CH₂- protons. The reported values are the average of two runs. NMR shifts of the product corresponded the reported values¹

Table S1. Gold-cataysed hydration of alkynes

EtEt +	H ₂ O 1.1 eq	[Au] (X%) NBu ₄ OTf (5%) 30°C, neat	Et	Ξt
		mol % of th	e .	• •

Entry	Catalyst	catalyst	Conv. % (time)
1	[Au(PAd₃)OTf]	0.05	<5 (24h)
2	[Au(PAd ₃)OTf]	0.1	<5 (24h) ^[a]
3	[Au(PAd ₃)OTf]	0.25	<5 (24h)
4	[Au(PAd ₃)NTf ₂]	0.1	<5 (24h)
5	[Au(PAd ₃)(CH ₃ CN)]BF ₄	0.1	<5 (24h)

^[a] Reaction was also performed at 60 °C with no difference in conversion

Hydration of diphenylacetylene

[Au(PAd₃)X], diphenylacetylene (312 mg, 1.75 mmol), H_2O (34.6 μ L, 1.925 mmol) and NBu₄OTf (34.3 mg, 0.0875 mmol) were mixed in a 4 mL glass screw-top vial. Reaction mixture was stirred (rpm 1500) at 120°C. The progress of the reaction was monitored by ¹H NMR. The conversion was calculated from the integral intensities of suitable aromatic protons.

¹H NMR (300 MHz, CDCl₃) δ 8.05 – 7.98 (m, 2H, CH_{Ar}), 7.60 – 7.52 (m, 1H, CH_{Ar}), 7.50 – 7.42 (m, 2H, CH_{Ar}), 7.38 – 7.21 (m, 5H, CH_{Ar}), 4.29 (s, 2H, CHCO).

NMR shifts of the product corresponded the reported values¹

Table S2. Gold-cataysed hydration of diphenylacetylene

Ph \longrightarrow Ph + H₂O $\xrightarrow{\text{[Au]}(X\%)}$ O 1.1 eq 120°C, neat Ph Ph

Entry	Catalyst	mol % of the catalyst	Conv. % (time)
1	[Au(PAd₃)OTf]	0.05	29 (15h)
2	[Au(PAd₃)OTf]	0.1	62 (4h) 78 (8h) 88 (15h)
3	[Au(PAd₃)OTf]	0.2	90 (4h) 96 (8h) 96 (15h)
4	[Au(PAd ₃)NTf ₂]	0.1	80 (4h) 91 (8h) 95 (15h)
5	[Au(PAd ₃)NTf ₂]	0.2	94 (4h) 96 (8h) 96 (15h)
6	[Au(JohnPhos)OTf]	0.2	86 (4h) 91 (8h)
7	-	-	0 (8h)

The reported values are the average of two runs.

¹H NMR spectrum of solid obtained with **Procedure A** for complex **1**

³¹P NMR spectrum of solid obtained with **Procedure A** for complex **1**

[Au(PAd₃)Cl] (1)¹H NMR spectrum

S7

S8

[Au(PAd₃)₂]Cl (2) ¹³C APT NMR spectrum

[Au(PAd₃)₂]BF₄ (**3**) ¹H NMR spectrum

$[Au(PAd_3)_2]BF_4$ (**3**) ¹³C NMR spectrum

[Au(PAd₃)₂]BF₄ (**3**) ³¹P NMR spectrum

[Au(PAd₃)₂]BF₄ (**3**) ¹⁹F NMR spectrum

[Au(PAd₃)₂]NTf₂ (4) ¹H NMR spectrum

[Au(PAd₃)₂]NTf₂ (**4**) ¹³C NMR spectrum

[Au(PAd₃)₂]NTf₂ (**4**) ¹⁹F NMR spectrum

[Au(PAd₃)(NTf₂)] (5) ¹H NMR spectrum - 7.26 CDCI3 - 8000 2.39 2.07 1.77 1.77 1.74 -7500 -7000 0 F₃C~^{||} 0 Au -6500 -6000 - 5500 - 5000 -4500 4000 -3500 - 3000 -2500 2000 -1500 - 1000 - 500 0 18.51 9.05 18.51 -500 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f1 (ppm)

[Au(PAd₃)(NTf₂)] (**5**) ³¹P NMR spectrum

Т

[Au(PAd₃)(NTf₂)] (5) ¹⁹F NMR spectrum

[Au(PAd₃)OTf] (6) ¹H NMR spectrum

[Au(PAd₃)OTf] (6) ¹³C NMR spectrum

S24

[Au(PAd₃)OTf] (**6**) ¹⁹F NMR spectrum

[Au(PAd₃)(MeCN)]BF₄ (**7**) ¹H NMR spectrum

[Au(PAd₃)(MeCN)]BF₄ (7) ¹³C NMR spectrum

[Au(PAd₃)(MeCN)]BF₄ (7) ³¹P NMR spectrum

00

[Au(PAd₃)(MeCN)]BF₄ (7) ¹⁹F NMR spectrum

[Au(PAd₃)Ph] (8) ³¹P NMR spectrum

[Au(PAd₃)(p-CF₃Ph)] (**9**) ¹H NMR spectrum

[Au(PAd₃)(p-CF₃Ph)] (**9**) ¹³C NMR spectrum

[Au(PAd₃)(p-CF₃Ph)] (**9**) ³¹P NMR spectrum

[Au(PAd₃)(p-CF₃Ph)] (9) ¹⁹F NMR spectrum

[Au(PAd₃)(p-OMePh)] (**10**) ¹H NMR spectrum

[Au(PAd₃)(p-OMePh)] (**10**) ¹³C NMR spectrum

[Au(PAd₃)(p-OMePh)] (**10**) ³¹P NMR spectrum

[Au(PAd₃)(CECPh)] (11) ¹H NMR spectrum

[Au(PAd₃)(CECPh)] (11) ¹³C NMR spectrum

[Au(PAd₃)(CECPh)] (11) ³¹P NMR spectrum

[Au(PAd₃)(OPh)] (**13**) ¹H NMR spectrum

[Au(PAd₃)(OPh)] (13) ¹³C NMR spectrum

[Au(PAd₃)(OPh)] (**13**) ³¹P NMR spectrum

[Au(PAd₃(CSA)] (**12**) ¹³C NMR spectrum

[Au(JohnPhos)Cl] ³¹P NMR spectrum

[Au(JohnPhos)OTf] ¹H NMR spectrum

[Au(JohnPhos)OTf] ³¹P NMR spectrum

¹H NMR spectrum of sample taken from reaction mixture of diphenylacetylene hydration after 8h with 0.2 mol% of **6**

References

1 M. Gatto, A. Del Zotto, J. Segato and D. Zuccaccia, Organometallics, 2018, 37, 4685–4691.