Supporting Information

Design of Thiol-Lithium Ion Interaction in Metal-Organic

Framework for High-Performance Quasi-Solid Lithium Metal

Batteries

Qi Zhang, ^{† a,b} Yingbo Xiao, ^{† a} Qi Li,^a Jia Wang,^a Sijia Guo,^a Xin Li,^a Yuan Ouyang,^a Qinghan Zeng,^a Wenchao He^a and Shaoming Huang^{a,b,*}

^aGuangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China

^bSynergy Innovation Institute of GDUT, Heyuan, 517000, China.

[†]These authors contributed equally.

*Corresponding author: E-mail: smhuang@gdut.edu.cn

Fig. S1 The XRD patterns of dried Zr-MA (a) and dried Zr-MA-Li⁺ (b).

Fig. S2 SEM images for Zr-MA-Li⁺.

Fig. S3 SEM images for Zr-MA-Na⁺.

Fig. S4 SEM images for Zr-MA-K⁺.

Fig. S5 SEM images for Zr-MA-Zn²⁺.

Fig. S6 Particle size distribution of Zr-MA (a) and Zr-MA-Li⁺ (b).

Fig. S7 The TGA curves of dried Zr-MA and dried Zr-MA-Li⁺.

Fig. S8 (a) Nitrogen adsorption-desorption isotherms, and (b) corresponding pore size distribution of UIO-66-2COOH, UIO-66-SO₃H, UIO-66-2OH and Zr-MA.

Fig. S9 The TGA curves of Zr-MA-Li⁺ (a), Zr-MA-Na⁺ (b), Zr-MA-K⁺ (c) and Zr-MA-Zn²⁺ (d).

Fig. S10 EIS within frequency of 1×10^{-5} Hz to 10 Hz of (a) Zr-MA-Li⁺, (b) Zr-MA-Na⁺, (c) Zr-MA-K⁺, and (d) Zr-MA-Zn²⁺ at temperatures from -20 °C to 60 °C.

Fig. S11 FT-IR spectra of Zr-MA and Zr-MA-Li⁺.

Fig. S12 The charge-discharge profiles of Li|SE-Zr-MA-Li⁺|LiFePO₄ batteries under 0.2 C.

Fig. S13 (a) The cycle performance with Coulombic efficiency and (b) chargedischarge profiles of Li|SE-Zr-MA-Li⁺|LiFePO₄ batteries at 1 C.

Fig. S14 The charge-discharge profiles of Li|SE-Zr-MA-Li⁺|LiFePO₄ batteries under 2 C.

Fig. S15 SEM of SE-Zr-MA-Li⁺ after long-cycle cycling.

Fig. S16 PXRD of Zr-MA-Li⁺ before and after long-cycle cycling.

Fig. S17 SEM of Zr-MA-Li⁺ after long-cycle cycling.

	Calculated					Found			
	Zr%	C%	Η%	О%	S%	C%	Н%	О%	S%
Zr-MA	34.8	18.4	1.8	32.7	12.3	20.3	2.79	28.5	12.2

Tab. S1 Elemental analysis results of Zr-MA.

Tab. S2 The comparison of pKa for thiophenol, phenol, benzenesulfonic acid, and benzoic acid.

	Thiophenol	Phenol	Benzenesulfonic acid	Benzoic acid
рКа	10.2	9.95	4.19	4.21

Tab. S3 The ion conductivities of Zr-MA-Li⁺, Zr-MA-Na⁺, Zr-MA-K⁺, Zr-MA-Zn²⁺ at different temperatures.

Samples	lonic conductivity (×10 ⁻⁴ S cm ⁻¹)									
	-20° ℃	-10℃	0°C	10℃	20° ℃	30° ℃	40 ℃	50° ℃	60° C	
Zr-MA-Li⁺	1.78	2.78	3.97	5.29	6.92	8.66	10.8	13.7	17.4	
Zr-MA-Na⁺	1.52	2.36	3.36	4.57	6.01	7.69	9.75	12.1	14.3	
Zr-MA-K+	0.65	1.00	1.44	1.89	2.42	2.89	3.43	4.08	4.98	
Zr-MA-Zn ²⁺	0.84	1.13	2.03	2.83	3.82	4.90	6.25	7.75	9.28	

Tab. S4 Comparison of electrochemical performances of LiFePO₄|Li cells with MOFs based on solid state electrolytes.

Electrolyte	Cycle performance (mAh g ⁻¹)	Rate performance (mAh g ⁻¹)	Ref.
LPC@UM	about 94 (1 C, 500 cycles, 25 °C)	146 (0.2 C, 25 °C) 106 (2 C, 25 °C)	1
Li-IL@MOF	132 (1 C, 100 cycles, 25 °C) (LiFePO₄ loading of ≈25 mg cm ⁻²)	68 (0.05 C, -20 °C) 93 (0.5 C, 25 °C) 143 (0.5 C, 80 °C)	2
ILE@MOF	151 (0.1 C, 60 cycles, 60 °C)	-	3
P@CMOF	about 91.5 (1 C, 60 cycles, 60 °C)	126 (0.5 C, 60 °C) 106 (1 C, 60 °C) 67.4 (5 C, 60 °C)	4
MOF-688	120 (~0.2 C, 200 cycles)	-	5
PL/UiOLiTFSI	147.4 (0.2 C, 100 cycles) 132 (1 C, 500 cycles)	145 (0.2 C, RT) 136 (1 C, RT) 109 (3 C, RT)	6
Li-IL@UIO-66- 2CO ₂ H	148.5 (0.1 C, 100 cycles) 115 (2 C, 500 cycles)	150 (0.1 C, RT) 145 (0.5 C, RT) 135 (1 C, RT)	7
SE-PMOF	145 (0.2 C, 100 cycles) 127 (1 C, 500 cycles)	153 (0.2 C, RT) 150 (0.5 C, RT) 144 (1 C, RT)	8
UiO-66- 2COOH/PVDF- HFP	-	131 (0.2 C, RT) 112 (0.5 C, RT) 90 (2 C, RT)	7
UiO-66- 2OH/PVDF- HFP	-	137 (0.2 C, RT) 132 (0.5 C, RT) 70 (2 C, RT)	8
Zr-MA-Li+	120 (1 C, 500 cycles) 90 (2 C, 700 cycles)	153 (0.2 C) 135 (0.5 C, RT) 115 (2 C, RT)	This work

References

- 1 L. Shen, H. B. Wu, F. Liu, J. L. Brosmer, G. Shen, X. Wang, J. I. Zink, Q. Xiao, M. Cai, G. Wang, Y. Lu and B. Dunn, *Adv. Mater.*, 2018, **30**, 1707476.
- 2 Z. Wang, R. Tan, H. Wang, L. Yang, J. Hu, H. Chen and F. Pan, *Adv. Mater.*, 2018, **30**, 1704436.
- 3 N. Chen, Y. Li, Y. Dai, W. Qu, Y. Xing, Y. Ye, Z. Wen, C. Guo, F. Wu and R. Chen, *J. Mater. Chem. A*, 2019, **7**, 9530-9536.
- 4 H. Huo, B. Wu, T. Zhang, X. Zheng, L. Ge, T. Xu, X. Guo and X. Sun, *Energy Storage Mater.*, 2019, **18**, 59-67.
- 5 W. Xu, X. Pei, C. S. Diercks, H. Lyu, Z. Ji and O. M. Yaghi, *J. Am. Chem. Soc.*, 2019, **141**, 17522-17526.
- 6 F. Zhu, H. Bao, X. Wu, Y. Tao, C. Qin, Z. Su and Z. Kang, *ACS Appl. Mater. Interfaces*, 2019, **11**, 43206-43213.
- 7 Q. Zhang, D. Li, J. Wang, S. Guo, W. Zhang, D. Chen, Q. Li, X. Rui, L. Gan and S. Huang, *Nanoscale*, 2020, **12**, 6976-6982.
- 8 Q. Zhang, B. Liu, J. Wang, Q. Li, D. Li, S. Guo, Y. Xiao, Q. Zeng, W. He, M. Zheng, Y. Ma and S. Huang, *ACS Energy Lett.*, 2020, **5**, 2919-2926.