Supporting Information

Facile Cyclization of Sodium Aminodiboranate to Construct Boron-nitrogen-hydrogen Ring

Huizhen Li,^{*a,b} Mingyue Ju,^{†b} Jiaxin Kang,^{†b} Ai-Ju Zhou,^a Hong-Yu Guan,^{*a} Douglas J. Austin,^c and

Yanfeng Yue^c

^aSchool of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China

^bHenan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China

^cDepartment of Biology, Geology, and Physical Science, Sul Ross State University, Alpine, TX, USA

This Electronic Supplementary Information replaces the version originally published on 31st October 2020, which contained errors in the ¹¹B NMR data in Section 1.

Table of Contents

1. General Experimental Details
2. Computational method4
3. Supporting Results
Figure S1a. ¹¹ B NMR spectrum of ADB in the solution mixture of 1 + HCl (adding 1 equiv. HCl solution to 1 solution) in THF at room temperature
Figure S1b. ¹ H NMR spectrum of the product H_2 in d_8 -Toluene
Figure S1c. XRD spectrum of the product NaCl
Figure S1d. ¹¹ B NMR spectrum of the solution mixture of 1 + HCl (adding 1.5 equiv. HCl solution to 1 solution) in THF at room temperature
Figure S1e. ¹¹ B NMR spectrum of the solution mixture of 1 + HCl (adding 1 solution to 1 equiv. HCl solution) in THF at room temperature
Figure S2. ¹¹ BNMR spectrum of the solution mixture of 1 + HCl in THF at different temperature. a) RT, b) 0 °C, c) -20 °C
Figure S3. ¹¹ BNMR spectrum of the solution mixture of $1 + HCl$ in different solvent at room temperature. a) THF, b) Et ₂ O, c) DME
Figure S4. ¹¹ B NMR spectrum of MeADB in the solution mixture of 2 + HCl (adding 1 equiv. HCl solution to 2 solution) in THF at 0 °C
Figure S5. ¹¹ B NMR spectrum of Me ₂ ADB in the solution mixture of 3 + HCl (adding 1 equiv. HCl solution to 3 solution) in THF at 0 °C
Figure S6 The optimized geometries for $[NH_2(BH_3)_2]^-$, ADB and H_2 . Colors: N, blue; B, pink; H, white (bond length is shown in Å, bond angle shown in °)
Figure S7 The optimized geometries for all the species of the $[NH_2(BH_3)_2]^- + HCl$ reactions. Colors: N, blue; B, pink; Cl, green; H, white (bond length is shown in Å, bond angle shown in °)
Figure S8 The nature population analysis of reactant complexes and transition states of the $[NH_2(BH_3)_2]^- + HCl$ reactions
Table S1 Calculated zero point energies (ZPE), relative energies ($\triangle(E + ZPE) \text{ kcal} \cdot \text{mol}^{-1}$), enthalpies ($\triangle H \text{ kcal} \cdot \text{mol}^{-1}$), gibbs free energies ($\triangle G \text{ kcal} \cdot \text{mol}^{-1}$) and entropy ($S \text{ cal} \cdot \text{mol}^{-1}$) of the reaction [NH ₂ (BH ₃) ₂] ⁻ + HCl \rightarrow ADB + H ₂ + Cl ⁻
4. Cartesian coordinates and vibrational frequencies on the studied models11

1. General Experimental Details

General Procedures: All manipulations were carried out by using Schlenk-line techniques or in a glovebox filled with high-purity nitrogen. ¹¹B NMR spectra were obtained at 192 MHz and externally referenced to BF₃·OEt₂ in C₆D₆ ($\delta = 0.00$ ppm). ¹¹H NMR spectra were obtained at 600 MHz and externally referenced to TMS in *d*₆-Beneze ($\delta = 0.00$ ppm). X-ray diffraction data was collected on a Rigaku D/max 2500 diffractometer by using Cu-*K* a radiation ($\lambda = 0.1542$ nm, 40 kV, 100 mA). Na[NR1R2(BH₃)₂] (R1, R2 = H, Me) were purchased from United Boron (Zhengzhou) Energy Materials S&T LLC. The HCl·Et₂O solution was prepared by passing dried HCl gas into Et₂O and titrated by 0.1 M standard KOH solution. The solvents (THF, DME, Et₂O) were dried over sodium/benzophenone and freshly distilled prior to use.

Reactions of Na[NH₂(BH₃)₂] with HCl·Et₂O:

A very rapid reaction was initiated when HCl·Et₂O solution (1.785 mL, 2 mmol) was injected into the flask filled with Na[NH₂(BH₃)₂] (0.134 g, 2 mmol) at 0 °C. A white precipitate and a large amount of H₂ (23.16 mL, 1.035 mmol, Figure S1b) formed immediately and the reaction was followed by the ¹¹B NMR. ADB was purified by fractionally condensation with high yield (75%, Table 1, entry 7, Figure S1a).¹⁻² The white solid was dried under a dynamic vacuum and further confirmed to be NaCl (0.116g, 1.992 mmol, Figure S1c). ¹¹B NMR (192 MHz, δ) -26.8 (br). ¹H NMR (*d*₆-Beneze, 600 MHz, δ) 4.2 (s, H₂). XRD(2 θ): 27.1, 31.4, 45.0, 53.4, 56.0, 65.8, 74.7. The reaction also can occur at room temperature/-20 °C in THF or DME/Et₂O with similar results (Figures S2, 3).

Reactions of Na[MeNH(BH₃)₂] (2) with HCl·Et₂O

A very rapid reaction was initiated when HCl·Et₂O solution (0.4463 mL, 0.5 mmol) was injected into the flask filled with Na[MeNH(BH₃)₂](0.0405 g, 0.5 mmol) at 0 °C. A white precipitate and a large amount of H₂ formed immediately and the reaction was followed by the ¹¹B NMR. NMeB₂H₆ was purified by fractionally condensation (yield, 38%, Table 1, entry 6, Figure S4).¹⁻² The white solid was dried under a dynamic vacuum and further confirmed to be NaCl. ¹¹B NMR (192 MHz, δ) -22.15 (br, sextet). ¹H NMR (*d*₆-Beneze, 600 MHz): δ 4.2 (s, H₂). XRD (20, NaCl): 27.4, 31.7, 45.2, 53.5, 56.1, 65.6, 74.5.

Reactions of Na[Me₂N(BH₃)₂] (3) with HCl·Et₂O

A very rapid reaction was initiated when HCl·Et₂O solution (0.4463 mL, 0.5 mmol) was injected into the flask filled with Na[Me₂N(BH₃)₂] (0.0475 g, 0.5 mmol) at 0 °C. A white precipitate and a large amount of H₂ formed immediately and the reaction was followed by the ¹¹B NMR. NMe₂B₂H₅ was purified by fractionally condensation (yield, 49%, Table 1, entry 7, Figure S5).¹⁻² The white solid was dried under a dynamic vacuum and further confirmed to be NaCl. ¹¹B NMR (192 MHz, δ) -17.48 (br, sextet). ¹H NMR (*d*₆-Beneze, 600 MHz): δ 4.2 (s, H₂). XRD (20, NaCl): 26.9, 31.5, 45.6, 53.1, 56.2, 65.4, 74.2.

2. Computational method

All density functional theory (DFT) calculations were performed using the Gaussian 09W program.³ The geometries, natural population analysis (NPA) of all the species are calculated at M06-2X/6-311++G(d,p) level of theory. As well as the corresponding frequencies of the optimized geometries are computed at the same level to prove the characteristics of the transition states with one imaginary frequency (Figures S6-8), and the stationary points without imaginary frequency. To get more accurate energies, the single point energy of all the species are calculated at CCSD(T)/aug-cc-pVDZ level of theory with SMD solvent model in THF. The intrinsic reaction coordinate (IRC)⁴⁻⁶ theory are used to confirm that the transition states really connect to minima along the reaction path. The rate constants are calculated by the conventional transition state theory (TST)⁷⁻⁹ with Winger tunneling correction and performed using the VKLab¹⁰ program coupled with the steady state approximation. The calculated structure of ADB is consistent with the microwave structure.¹¹ As presented in Figures S6-8, the geometries are in good accordance with the experiment. Otherwise, the N-H bond distance is shorter and the B- μ H bond distance is longer by 0.008 and 0.014 Å, respectively. Furthermore, the dipole moment (2.67 D) is calculated at the M06-2X/dft2-T2VPD level of theory, which is same with the measured value of 2.67 D.11

References

(1) H. Li, N. Ma, W. Meng, J. Gallucci, Y. Qiu, S. Li, Q. Zhao, J. Zhang, J.-C. Zhao, X. Chen, J. Am. Chem. Soc. 2015, 137, 12406.

- (2) X. Chen, J.-C. Zhao, S. G. Shore, J. Am. Chem. Soc. 2010, 132, 10658.
- (3) M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 09, Revision D.01;

Gaussian, Inc.: Wallingford, CT, 2009.

- (4) K. Fukui, Acc. Chem. Res., 1981, 14(12): 363.
- (5) M. Page, Jr J. W. McIver, J. Chem. Phys. 1988, 88(2): 922.
- (6) C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1989, 90(4): 2154.
- (7) B. C. Garrett, D. G. Truhlar, J. Chem. Phys. 1979, 70, 1593.
- (8) B. C. Garrett, D. G. Truhlar, J. Am. Chem. Soc. 1979, 101, 4534.
- (9) B. C. Garrett, D. G. Truhlar, R. S. Grev, A. W. Magnuson, J. Phys. Chem. 1980, 84, 1730.
- (10) S. W. Zhang, N. T. Truong, VKLab version 1.0, University of Utah, Salt Lake City, **2001**.
- (11) A. B. Burg, J. F. Liebman, A. Greenberg, Advances in boron and the boranes, VCH: New York. **1988**. p417.

3. Supporting Results

Figure S1a. ¹¹B NMR spectrum of ADB in the solution mixture of **1** + HCl (adding 1 equiv. HCl solution to **1** solution) in THF at room temperature.

Figure S1b. ¹H NMR spectrum of the product H_2 in d_8 -Toluene.

Figure S1c. XRD spectrum of the product NaCl.

Figure S1d. ¹¹B NMR spectrum of the solution mixture of **1** + HCl (adding 1.5 equiv. HCl solution to **1** solution) in THF at room temperature.

Figure S1e. ¹¹B NMR spectrum of the solution mixture of **1** + HCl (adding **1** solution to 1 equiv. HCl solution) in THF at room temperature.

Figure S2. ¹¹BNMR spectrum of the solution mixture of **1** + HCl in THF at different temperature. a) RT, b) 0 °C, c) -20 °C

Figure S3. ¹¹BNMR spectrum of the solution mixture of **1** + HCl in different solvent at room temperature. a) THF, b) Et₂O, c) DME.

Figure S4. ¹¹B NMR spectrum of MeADB in the solution mixture of 2 + HCl (adding 1 equiv. HCl solution to 2 solution) in THF at 0 °C.

Figure S5. ¹¹B NMR spectrum of Me₂ADB in the solution mixture of $\mathbf{3}$ + HCl (adding 1 equiv. HCl solution to $\mathbf{3}$ solution) in THF at 0 °C.

Figure S6 The optimized geometries for [NH₂(BH₃)₂]⁻, ADB and H₂. Colors: N, blue; B, pink; H, white (bond length is shown in Å, bond angle shown in °)

Figure S7 The optimized geometries for all the species of the $[NH_2(BH_3)_2]^- + HCl$ reactions. Colors: N, blue; B, pink; Cl, green; H, white (bond length is shown in Å, bond angle shown in °).

Figure S8 The nature population analysis of reactant complexes and transition states of the $[NH_2(BH_3)_2]^-$ + HCl reactions.

		L =(3)2.	1	2		
Species	ZPE	$\triangle E$	\triangle (<i>E</i> +ZPE)	riangle H	riangle G	S
$[NH_2(BH_3)_2]^- + HCl$	60.20	0.00	0.00	0.00	0.00	112.78
RC1	61.64	-3.21	-1.77	-2.52	5.84	84.75
TS1-1	61.53	1.31	2.64	2.00	10.46	84.41
$PC1 + H_2$	59.31	-15.29	-16.18	-15.66	-14.54	77.90
RC2	61.55	-4.80	-3.45	-4.28	4.51	83.29
TS1-2	63.11	5.13	8.04	7.19	15.88	83.63
$IM1-2 + H_2$	58.71	-16.68	-18.17	-17.64	-16.38	77.43
$IM2-2 + H_2$	58.78	-19.04	-20.46	-19.91	-18.35	76.42
$TS2-2 + H_2$	58.35	-3.66	-5.51	-5.00	-3.57	76.87
$ADB + H_2 + Cl^{-1}$	59.47	-9.09	-9.81	-9.06	-13.92	129.06

Table S1 Calculated zero point energies (ZPE), relative energies ($\triangle(E + ZPE)$ kcal·mol⁻¹), enthalpies ($\triangle H$ kcal·mol⁻¹), gibbs free energies ($\triangle G$ kcal·mol⁻¹) and entropy (S cal·mol⁻¹) of the reaction [NH₂(BH₃)₂]⁻ + HCl \rightarrow ADB + H₂ + Cl⁻

4. Cartesian coordinates and vibrational frequencies on the studied models

$[NH_2(BH_3)_2]^-$

В	1.40427600	-0.29218800	-0.00001800
Н	1.45259200	-0.97257100	-1.01179500
Н	2.29650300	0.55850800	0.00011600
В	-1.40432900	-0.29225100	-0.00004000
Н	-1.45260700	-0.97241700	1.01183600
Н	-1.45258700	-0.97274600	-1.01172000
Н	1.45234400	-0.97300400	1.01147300
Ν	0.00002600	0.49449700	-0.00004200
Н	0.00021900	1.11653000	0.80735700
Н	-0.00004800	1.11767000	-0.80656200
Н	-2.29632900	0.55874800	-0.00011900

Vibrational frequencies

155.4854	236.9410	280.7759
576.7250	695.5078	799.2926
818.0507	885.5216	1026.9020
1070.6064	1184.8017	1196.6696
1208.7228	1211.5935	1226.1517
1226.1901	1227.5819	1228.6904
1657.7065	2379.4123	2393.3151
2455.8671	2473.0802	2483.2709
2497.9449	3486.9113	3558.2377

The reaction of $[NH_2(BH_3)_2]^- + HCl$ Complex (RC1) Cartesian coordination

В	0.80856100	1.36946300	0.22184400
Н	1.69657800	1.93782400	0.81641100
Н	0.21464800	2.08855800	-0.56399500
В	2.23080400	-0.99357400	0.31174500
Н	1.50837700	-1.40565600	1.20203100
Н	3.21794200	-0.42406800	0.74516200
Н	0.01274500	0.95426800	1.09456500
N	1.38027500	0.09630300	-0.52713100
Н	0.60849300	-0.39133700	-0.98592000
Н	1.96920700	0.42780800	-1.28997400
Н	2.53684600	-1.88806400	-0.47085400
Cl	-2.09607000	-0.25120000	-0.00184300
Н	-0.99039400	0.41749700	0.50586800

Vibrational frequencies

54.4933	102.2783	145.1856
208.7867	249.5628	403.9567
609.2092	719.2137	811.7023
818.2570	845.8907	915.1127
938.8328	1001.7038	1068.8752

1130.4702	1192.7879	1196.9898
1214.7630	1215.6399	1232.2974
1238.5800	1310.4885	1480.4633
1664.0368	2129.6320	2435.9723
2489.1732	2516.9202	2559.7038
2616.2136	3488.6287	3556.2643

TS1-1

Cartesian coordination

В	-1.15811700	-1.25788300	0.12147100
Н	-1.72188100	-1.91677200	-0.69944100
Н	0.31888200	-2.02725100	-0.37806200
В	-2.49968100	0.81274900	0.07683300
Н	-3.03954600	0.10124100	0.90914100
Η	-3.06546300	0.74357600	-0.99602500
Н	-1.07063600	-1.60636200	1.25533800
Ν	-0.99021400	0.19578800	-0.16559700
Н	-0.25305100	0.60700200	0.41684500
Н	-0.68765200	0.38498600	-1.11863600
Н	-2.36637500	1.94904400	0.47793800
Cl	2.13324800	0.23997900	0.03189200
Н	0.84098800	-1.45995200	-0.24159600

Vibrational frequencies

-348.0000	61.4394	116.4299
149.4126	181.0077	277.0422
420.5498	498.8491	662.3227
675.6495	754.2144	788.3601
836.0691	864.4469	1029.0274
1051.3582	1069.1918	1105.1261
1189.6635	1205.6861	1215.3086
1218.8669	1232.6868	1270.3106
1672.6837	2474.6901	2522.4024
2557.8330	2685.3677	2784.7720
3437.0002	3567.7874	3642.0027

Complex (PC1)

Cartesian coordination

В	-1.91819100	0.95659800	-0.17765500
Н	-2.60606700	1.52062100	0.62925300
В	-1.91727400	-0.95707900	-0.17739900
Н	-2.74864300	-0.00065500	-0.65254600
Н	-2.60466600	-1.52157500	0.62957900
Н	-1.57711500	1.53124400	-1.16953600

Ν	-0.86689300	0.00033900	0.41816500
Н	0.11092800	0.00059700	0.03615800
Н	-0.80097400	0.00048800	1.42870500
Н	-1.57560400	-1.53153700	1.16917800
Cl	2.17927700	0.00005000	-0.05201900

Vibrational frequencies

91.7835	98.6325	200.0351
349.6660	659.4351	727.8027
757.0251	794.0867	926.6960
941.1925	972.6072	1050.7916
1084.6406	1124.2028	1160.6586
1196.6034	1220.5099	1237.6412
1674.2465	1715.4779	1994.7341
2611.8688	2626.2559	2702.7629
2712.0955	3039.6733	3625.0033

Complex (RC2)

Cartesian coordination

В	0.74454800	1.02047800	0.28470400	
Н	0.67255100	0.95060400	1.47744800	
Н	0.42623300	2.08632200	-0.16881300	
В	2.45506300	-1.10831600	0.11872500	
Н	1.54621600	-1.80329900	-0.28436200	
Н	2.56339300	-1.12648100	1.32796300	
Н	-0.12120579	0.48040559	-0.34679593	
Ν	2.06582600	0.42967000	-0.27597800	
Н	2.09794200	0.52238600	-1.29067800	
Н	2.82119800	1.02150100	0.06847300	
Н	3.51032400	-1.34267600	-0.44787600	
Cl	-2.44098209	-0.18500078	-0.01919546	
Н	-0.30527868	0.02051252	0.30551240	

Vibrational frequencies

52.1755	107.6473	166.7768
253.7268	289.0881	406.7848
607.5985	699.2373	713.3319
770.1611	825.1427	843.9224
896.4329	1022.3009	1065.2322
1172.3049	1198.6419	1203.0738
1212.7605	1222.0020	1225.9752
1242.9989	1293.3079	1552.6771
1670.7268	2286.7338	2426.3517
2486.4986	2493.5456	2516.0718

3551.4375

TS1-2

Cartesian coordination

В	0.74454800	1.02047800	0.28470400
Н	0.67255100	0.95060400	1.47744800
Н	0.42623300	2.08632200	-0.16881300
В	2.45506300	-1.10831600	0.11872500
Н	1.54621600	-1.80329900	-0.28436200
Н	2.56339300	-1.12648100	1.32796300
Н	-0.22970000	0.41272500	-0.42593400
N	2.06582600	0.42967000	-0.27597800
Н	2.09794200	0.52238600	-1.29067800
Н	2.82119800	1.02150100	0.06847300
Н	3.51032400	-1.34267600	-0.44787600
Cl	-2.56476400	-0.19691200	-0.03801500
Н	-0.26600700	0.05791900	0.30473400

75.2835

222.8265

604.0508

781.4365

983.4064

1184.9491

1217.7351

1405.7020

2472.9946

2629.2800

3518.8287

97.0214

286.0882

691.1112

918.8783

1089.0041

1205.0736

1224.9684

1634.8332

2529.8435

2702.6951

3560.7857

Vibrational frequencies 44.6975 189.6029 267.3608 315.2891 524.0451 644.5263 707.6032 813.9901 871.2733 926.5500 1035.8088 962.8205 1133.9935 1197.4782 1211.7622 1213.7695 1226.6814 1233.2508 1245.1981 1653.0055 2418.6568

2510.1710

3478.2958

2539.7445

3552.9246

Intermediate (IM2-2) Cartesian coordination

2483.3307

2619.3951

В	0.03125600	0.61620000	-0.01671800
Н	-0.00456500	1.23289700	1.01003600
Н	-0.04238000	1.16952000	-1.09041300
В	2.77151700	0.05958400	0.02623700
Н	2.86225700	1.10853900	-0.59009000
Н	3.36244900	-0.83861500	-0.52886500
N	1.18610100	-0.37113900	-0.02201900
Н	0.99873700	-0.99595200	0.77795500
Н	1.02050600	-0.94206100	-0.87324500
Н	3.07643700	0.16301800	1.21334500
Cl	-1.97588300	-0.09872300	0.01104800

Vibrational frequencies

202 7802 525 0738 610 0082	
292.7002 525.0756 019.9062	
756.2472 777.6440 865.0690	
903.4346 971.0274 1084.207	1
1108.6898 1197.0194 1208.851	5
1214.5139 1224.9714 1226.674	4
1237.5005 1666.2438 2425.694	9
2495.1388 2520.3036 2581.346	6
2637.2102 3486.1733 3557.008	6

Intermediate (IM1-2) Cartesian coordination

Vibrational frequencies

-444.8370

175.8728

384.8228

733.7156

952.2767

1145.9921

1211.4355

1239.9438

1669.2140

2563.8608

3492.0883

В	-0.15077700	0.88554300	0.37932000
Н	0.06780000	0.84324800	1.56179600
Н	-0.47650700	1.98194900	-0.02957200
В	2.20175100	-0.60494200	0.24095600
Н	1.61921000	-1.58398800	0.66429200
Н	2.73374700	0.03839900	1.13026500
N	1.10248600	0.36629200	-0.44730900
Н	0.74319300	-0.09609400	-1.28245100
Н	1.60132400	1.18610400	-0.79055700
Н	3.00744100	-0.89875700	-0.63848100

TS2-2 Cartesian frequencies

В	0.62895700	0.93723400	-0.00006300
Н	0.51490900	1.47872300	1.05096300
Н	0.51504500	1.47882000	-1.05105800
В	2.52290500	-0.14615300	0.00011800
Н	2.45616200	1.10236000	0.00009800
Н	3.04889100	-0.51114300	-1.02507800
Ν	0.97169300	-0.53074400	-0.00011300
Н	0.57982600	-0.99042900	0.81554300
Н	0.58009100	-0.99034400	-0.81594300
Н	3.04857300	-0.51113000	1.02547900
Cl	-1.95909800	-0.07629700	0.00003000

Vibrational frequencies

-393.8976	91.8889	152.2346
193.0446	281.5897	699.9794
738.1183	781.2947	787.3471
838.5651	969.9181	1042.1569
1073.5648	1101.3443	1139.2316
1195.8370	1203.7985	1240.2731
1275.4583	1669.1861	2285.3530
2550.6233	2607.6024	2706.7100
2814.1057	3559.0052	3627.3796