Electronic Supporting Information

Tuning the Langasite, La₃SbZn₃Si₂O₁₄ Towards White Light Emission: Synthesis, Structure, SHG and Photoluminescence Studies

Anupam Bhim, Ashutosh Mohanty and Srinivasan Natarajan*a

^aFramework Solids Laboratory, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore – 560012, India.

E-mail: snatarajan@iisc.ac.in

Figure S1. SEM image and corresponding EDX spectrum of (a) $La_3SbZn_3Si_2O_{14}$ and rare-earth doped $La_3SbZn_3Si_2O_{14}$.

Figure S2. SEM-EDX elemental mapping for rare-earth doped La₃SbZn₃Si₂O₁₄ (1% Tm³⁺, 2% Tb³⁺, 1% Eu³⁺)

Atom	Site	X	у	Z	U _{iso} (Å ²)	Occupancy	
La	Зе	0.440468	0.0	0.0	0.015(2)	1.0	
Sb	la	0.0	0.0	0.0	0.011(2)	1.0	
Zn	3f	0.750358	0.0	0.5	0.014(2)	1.0	
Si	2d	0.333300	0.666700	0.490313	0.017(2)	1.0	
01	2d	0.333300	0.666700	0.785414	0.026(2)	1.0	
O2	6g	0.492258	0.299794	0.634513	0.025(2)	0.667	
O2	6g	0.492258	0.299794	0.634513	0.025(2)	0.333	
O3	6g	0.223420	0.102585	0.236710	0.035(1)	1.0	
Space group $D(2)$: $a = b = 9.210(2)$ Å $a = 5.064(4)$ Å $a = 0.000 \text{ m} = 12000$							

Table S1. Crystallographic data for La₃SbZn₃Si₂O₁₄ with trigonal structure.

Space group P321: a = b = 8.219(2) Å, c = 5.064(4) Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$;

Reliability Factors: $R_p = 11.70\%$, $R_{wp} = 12.62\%$, $\chi^2 = 18.23$

Figure S3. a) The polyhedral layer consisting of SbO_6 octahedra and two types of La polyhedra, b) The ZnO_4 and SiO_4 tetrahedra are corner shared via oxygen atoms, c) Projection of the La₃SbZn₃Si₂O₁₄ crystal structure upon the xz plane.

Figure S4. PXRD patterns of the rare earth doped $La_{3-x}M_xSbZn_3Si_2O_{14}$, (0< x ≤ 0.6) for M = Eu, (0< x ≤ 0.5) for M = Tb and (0< x ≤ 0.3) for M = Tm compounds.

Figure S5. Rietveld refinement of rare-earth doped La₃SbZn₃Si₂O₁₄ (1% Tm³⁺, 2% Tb³⁺ and 1 % Eu³⁺) from the PXRD data. The observed (O), calculated (red line), and difference (bottom blue line) profiles are shown. The vertical bars (|) indicate Bragg reflections.

Table S2. Crystallographic data for rare-earth doped $La_3SbZn_3Si_2O_{14}$ (1% Tm³⁺, 2% Tb³⁺ and 1 % Eu³⁺)

Atom	Site	X	У	Z	U _{iso} (Å ²)	Occupancy
La1/Tm1/Tb1/Eu1	2a	0.0	0.436(2)	0.0	0.022(2)	0.98/0.005/0.01/0.005
La2/Tm2/Tb2/Eu2	<i>4c</i>	-0.002(2)	0.286(4)	0.287(1)	0.020(4)	0.98/0.005/0.01/0.005
Sb	2a	0.0	0.0	0.0	0.021(1)	1.0
Zn1	2a	0.5	0.744	0.0	0.030(5)	1.0
Zn2	4c	0.493(1)	0.121(2)	0.121(3)	0.008(2)	1.0

Si	<i>4c</i>	0.457(4)	0.514(2)	0.167(4)	0.024(6)	1.0
O1	<i>4c</i>	0.745(7)	0.464(1)	0.168(2)	0.027(2)	1.0
O2	4c	0.679(1)	0.857(4)	0.370(5)	0.011(2)	1.0
O3	4c	0.719(4)	0.135(2)	0.421(2)	0.038(3)	1.0
O4	4c	0.604(2)	0.141(3)	0.264(1)	0.076(1)	1.0
O5	4c	0.228(4)	0.978(2)	0.112(3)	0.062(5)	1.0
O6	4c	0.205(1)	0.342(2)	0.426(4)	0.007(2)	1.0
O7	4c	0.213(4)	0.688(6)	0.450(2)	0.008(4)	1.0

Space group A121: a = 5.127(2) Å, b = 8.237(5) Å, c = 14.284(3) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 90.07^{\circ}$;

Reliability Factors: $R_p = 3.48\%$, $R_{wp} = 4.23\%$, $\chi^2 = 4.86$;

Bond Lengths (Å): Zn–O = 1.959 (average), Sb–O = 1.996(1), Si–O = 1.579(2), La/Tm/Tb/Eu– O = 2.561 (average)

 $La_3SbZn_3Si_2O_{14}$ at room temperature. **Table S3.** SHG Responses, for the prepared compounds

Compound	SHG at 1064 nm (×KDP)
La ₃ SbZn ₃ Si ₂ O ₁₄	3.6
La ₃ SbZn ₃ Si ₂ O ₁₄ (RE	3.4
doped)	

Figure S7. (a)The dielectric constant and (b) dielectric loss versus frequency plots for the Langasite compounds at room temperature.

Figure S8. The variation of PL intensity as a function of the $Eu^{3+}/Tb^{3+}/Tm^{3+}$ doping concentration.

Table S4. CIE chromaticity coordinates for $La_3SbZn_3Si_2O_{14}$ doped with 3% Tm³⁺, 7% Tb³⁺, and 10% Eu³⁺ samples

Compound	X	У
La ₃ SbZn ₃ Si ₂ O ₁₄ : 3% Tm ³⁺	0.14	0.10
$La_3SbZn_3Si_2O_{14}$: 7% Tb ³⁺	0.24	0.66
$La_3SbZn_3Si_2O_{14}$: 10% Eu^{3+}	0.62	0.34

Phosphor	Excitation Wavelength (nm)	Chromaticity coordinates (x,y)	CCT(K)	Quantum efficiency (%)	Ref.
YPO ₄ : (2%) Eu ³⁺ , (5%) Tb ³⁺ , (2%) Tm ³⁺	362	(0.315,0.273)	6995	-	1
CaMoO ₄ : (4%) Eu ³⁺ , (4%) Tb ³⁺ , (4%) Tm ³⁺	350	(0.340,0.330)	5095	-	2
LiGd(WO ₄) ₂ : (2%) Eu ³⁺ , (4%) Tb ³⁺ , (3%) Tm ³⁺	360	(0.343,0.327)	4980	9	3
K ₃ La(PO ₄) ₂ : (7%) Eu ³⁺ , (30%) Tb ³⁺ , (10%) Tm ³⁺	358	(0.366,0.333)	4072	38.2	4
NaYGeO ₄ : (12%) Eu ³⁺ , (7%) Tb ³⁺ , (3%) Tm ³⁺	369	(0.352,0.376)	4842	40.2	5
Na ₂ Y ₂ B ₂ O ₇ : (0.5%) Eu ³⁺ , (60%) Tb ³⁺ , (0.5%) Ce ³⁺	365	(0.403,0.487)	4095	77	6
NaGd(WO ₄) ₂ : (4%) Eu ³⁺ , (3%) Dy ³⁺ , (1%) Tm ³⁺	365	(0.364,0.322)	4040	-	7
Ca ₃ Bi(PO ₄) ₃ : (9%) Eu ³⁺ , (10%) Tb ³⁺ , (4%) Tm ³⁺	360	(0.338,0.329)	5282	-	8
La ₃ SbZn ₃ Si ₂ O ₁₄ : (1%) Eu ³⁺ , (2%) Tb ³⁺ , (1%) Tm ³⁺	360	(0.337,0.348)	5309	16	This work

Table S5. Comparison of the literature reported LED materials with the present Langasite host

Figure S9. The compound, $La_3SbZn_3Si_2O_{14}$ (1% Tm³⁺, 2% Tb³⁺ and 1 % Eu³⁺) excited at different wavelength.

Figure S10. Variation of emission intensities at 454 nm (${}^{1}D_{2}\rightarrow{}^{3}F_{4}$), 544 nm (${}^{5}D_{4}\rightarrow{}^{7}F_{5}$), and 619 nm (${}^{5}D_{0}\rightarrow{}^{7}F_{2}$) vs. Eu³⁺ concentrations in La₃SbZn₃Si₂O₁₄: 1% Tm³⁺, 2% Tb³⁺, *x*% Eu³⁺ (*x* = 0, 0.5, 1.0, 2.0, 3.0, 4.0) compounds under 360 nm excitation.

Figure S11. The spectral overlap between the PLE spectrum of $La_3SbZn_3Si_2O_{14}$: Eu^{3+} and PLE spectrum of $La_3SbZn_3Si_2O_{14}$: Tb^{3+} phosphors.

Figure S12. a) The excitation spectrum of $La_3SbZn_3Si_2O_{14}$:1% Tm³⁺, 2% Tb³⁺, 4% Eu³⁺ sample monitored at 619 nm; b) The emission spectrum of the sample at the excitation of 488nm.

Figure S13. The decay curves for the luminescence of Tm³⁺ ions in La₃SbZn₃Si₂O₁₄: 2% Tm³⁺; 2% Tm³⁺, 5% Eu³⁺; 2% Tm³⁺, 3% Tb³⁺ samples (excited at 360 nm, monitored at 454 nm).

References

- 1. a) Z. Yahiaoui, M.A. Hassairi, M. Dammak, E. Cavalli, J. Alloys Compd., 2018, 763, 56-61.
- R. L. Tranquilin, L. X. Lovisa, C. R. R. Almeida, C. A. Paskocimas, M. S. Li, M. C. Oliveira, L. Gracia, J. Andres, E. Longo, F. V. Motta and M. R. D. Bomio, *J. Phys. Chem. C*, 2019, 123, 18536–18550.
- 3. Y. Zhang, W. T. Gong, J. J. Yu, Y. Lin and G. L. Ning, RSC Adv., 2015, 5, 96272–96280.
- 4. X. Wu, W. Bai, O. Hai, Q. Ren, J. Zheng, Y. Ren, Opt. Laser Technol., 2019, 115, 176-185.
- 5. W. Zhao, X. Feng, B. Fan, J. Mater. Sci.: Mater. Electron, 2020, 31, 14434–14442.
- 6. D. Wen and J. Shi, Dalton Trans., 2013, 42, 16621-16629.
- 7. Y. Liu, G. Liu, J. Wang, X. Dong and W. Yu, Inorg. Chem., 2014, 53, 11457–11466.
- 8. M. M. Jiao, N. Guo, W. Lu, Y. C. Jia, W. Z. Lv, Q. Zhao, B. Q. Shao and H. P. You, *Dalton Trans.*, 2013, **42**, 12395–12402.