SUPPLEMENTARY INFORMATION

Complex formation and cytotoxicity of Triapine derivatives: a comparative solution study on the effect of the chalcogen atom and NH-methylation

Éva A. Enyedy,* Nóra V. May, Veronika F.S. Pape, Petra Heffeter, Gergely Szakács, Bernhard K. Keppler, Christian R. Kowol

Table S1. Calculated absorption maxima (λ_{max}), molar absorptivity (ε) and chemical shifts (δ) of the ligand species in the different protonation states. {T = 25 °C, I = 0.10 M (KCl)}

	O-Triapine	Triapine	Se-Triapine	Me-Triapine
$\lambda_{\max} / \operatorname{nm} (\boldsymbol{\varepsilon} / \operatorname{M}^{-1} \operatorname{cm}^{-1})$				
H_2L^+	382 (13700)	402 (20600)	412 (19400)	
		290 (10800)	288 (9400)	
$\mathrm{HL}^{+/\mathrm{o}}$	352 (11300)	368 (15600)	372 (16480)	406 (22100)
		290 (11500)	300 (7400)	
$L^{o/-}$		376 (17200)	376 (16060)	364 (18160)
$oldsymbol{\delta}$ / ppm				
CH=N HL^+/L	8.21 / 8.14			8.07 / 8.16
$\mathbf{CH(4)} \mathbf{HL}^+ / \mathbf{L}$	7.81 / 7.31			7.83 / 7.36
$\mathbf{CH(5)} \mathbf{HL}^+ / \mathbf{L}$	7.64 / 7.25			7.67 / 7.31
$\mathbf{CH(6)} \mathrm{HL}^{+} / \mathrm{L}$	7.99 / 7.94			8.02 / 8.00

logβ		O-Triapine ^b			
	UV-vis	pH-pot.	EPR		
[CuLH] ²⁺	4.76(4)	4.80(2)	4.83(2)		
$[CuL]^+$	0.29(2)	0.22(2)	0.28 ^c		
[CuLH ₋₁]	-7.56(5)	-8.56(2)	-8.50 ^d		
$[CuLH_2]^-$	-18.21(6)	-19.48(3)	-19.65(3)		
[CuL ₂]	_	_	-5.63(6)		
Triapine ^e					
	pH-pot.	EPR			
[CuLH] ²⁺	_	16.69			
$[CuL]^+$	13.89	14.35			
[CuLH ₋₁]	5.89	4.68			
$[CuLH_{-2}]^{-}$	-5.98	-7.57			
$[CuL_2H]^+$	27.16	28.67			
$[CuL_2]$	20.32	$20.95^{\rm f}$			
$[Cu_2L_3]^+$	38.79	39.50			
	Se-Triapin	Se-Triapine			
	UV-vis		UV-vis		
[CuLH] ²⁺	\geq 20.3	$[CuL]^{2+}$	≥11		
$[CuL]^+$	\geq 18.55(6)	$[CuLH_{-1}]^+$	\geq 4.64(4)		
[CnLH 1]	> 9.12(15)	[CuLH 2]	> c a - 4 8		

Table S2 Overall stability constants (log β) of the Cu(II) complexes of the studied ligands determined by various methods in 30% (w/w) DMSO/H₂O. { $T = 25 \degree C$, I = 0.10 M (KCl)} ^a

[CuLH_1] $\geq 9.12(15)$ **[CuLH_2]** $\geq c.a.-4.8$ ^a Uncertainties (SD) are shown in parentheses for the complexes determined in the present work. ^b O-Triapine possesses only one dissociable proton in the studied pH range (pyridinium NH⁺) and only pK₁ could be determined accurately (pK₂ was too high). Thus, during the computation of the log β values of the complexes the ligand was considered as a monoprotic ligand: HL⁺ was used as the fully protonated form instead of H₂L⁺. ^c Two isomers were detected. Isomer H (with higher g_0 value): log β = 0.21(2) and isomer L (with lower g_0 value): log β = 0.53(8). ^d Two isomers were detected. Isomer H: log β = -8.73(2) and isomer L: log β = -8.90(3). ^e Data taken from Ref. [30] ^f Two isomers were detected. Isomer L (with lower g_0 value): log β = 20.66 and isomer H (with higher g_0 value): log β = 20.64, reported in Ref. [30]

[30] É. A. Enyedy, N. V. Nagy, É. Zsigó, C. R. Kowol, V. B. Arion, A. Roller, B. K. Keppler and T. Kiss, Eur. J. Inorg. Chem., 2010, 2010, 1717, DOI: 10.1002/ejic.200901174

Table S3 Overall stability constants (log β) of the Fe(III) and Fe(II) complexes of the studied ligands determined by pH-potentiometry in 30% (w/w) DMSO/H₂O. {T = 25 °C, I = 0.10 M (KCl)} ^a

logβ	O-Triapine ^b	Triapine ^c	Se-Triapine	logβ	Me-Triapine
[Fe(II)LH] ²⁺		15.91			
$[Fe(II)L]^+$	-4.96(3)	12.29	10.56(9)	$[Fe(II)L]^{2+}$	7.05(9)
$[Fe(II)L_2H]^+$		27.70			
[Fe(II)L ₂]	-12.49(5)	22.55	19.9(1)	$[Fe(II)L_2]^{2+}$	11.96(9)
$[Fe(II)L_2H_{-1}]^-$		10.83			
[Fe(III)LH] ³⁺	10.55(3) ^d				
$[Fe(III)L]^{2+}$	6.43(3) ^d	14.03	11.02(10)		
$[Fe(III)L_2]^+$		26.25	22.31(9)		
				$[Fe(III)LH_{-1}]^{2+}$	1.96(9)

^a Uncertainties (SD) are shown in parentheses for the complexes determined in the present work. ^b O-Triapine possesses only one dissociable proton in the studied pH range (pyridinium NH⁺) and only p K_1 could be determined accurately (p K_2 was too high). Thus, during the computation of the log β values of the complexes the ligand was considered as a monoprotic ligand: HL⁺ was used as the fully protonated form instead of H₂L⁺. ^c Data taken from Ref. [31] ^d Determined by UV-vis spectrophotometry.

[31] É. A. Enyedy, M. F. Primik, C. R. Kowol, V. B. Arion, T. Kiss and B. K. Keppler, Dalton Trans., 2011, 40, 5895, DOI: 10.1039/C0DT01835J

SUPPLEMENTARY INFORMATION

	\mathbf{g}_{0}	A _o /G	a _o ^N /G	α/G	β/G	γ/G
Cu ²⁺	2.192(1)	33.2(8)		45(1)	-2.4(6)	0.1(5)
O-Triapine						
[CuLH] ²⁺	2.1431(4)	50.15(4)	14.4(7)	45.6(6)	-16.7(3)	1.2(1)
$[CuL]^+$						
isomer 1	2.1240(2)	61.4(2)	12.2(4), 13.9(3)	30.6(3)	-15.5(1)	2.5(2)
isomer 2	2.104(2)	64(2)	15(1), 15(1), 17(2)	33(2)	-15(1)	1.5(8)
[CuLH ₁]						
isomer 1	2.1243(5)	38.1(5)	12.8(7), 13(1)	33.8(9)	-17.5(3)	2.9(1)
isomer 2	2.0915(5)	54.0(8)	17.4(8), 14(1), 14(1)	33(1)	-17.0(1)	2.1(5)
$[CuLH_2]^-$	2.0959(1)	84.8(1)	16.7(2), 15.3(2)	24.0(1)	-15.9(1)	3.7(1)
[CuL ₂]	2.125(2)	12(3)		29(2)	-9(2)	5.3(8)
Triapine ^a						
[CuLH] ²⁺	2.1069(3)	73.7(4)	15(1), 10(1)	34.8(5)	-18.0(1)	4.8(3)
$[CuL]^+$	2.0958(1)	72.6(1)	16.7(5), 9.8(5)	23.9(2)	-12.1(1)	2.0(1)
[CuLH ₁]	2.0865(4)	70.7(5)	14.1(4), 10.8(4)	28.6(1)	-17.9(1)	4.0(1)

Table S4. Isotropic EPR parameters of the components obtained for Cu(II) complexes of O-Triapine. (Uncertainties (SD) are shown in parentheses.)

^a Dara are taken from Ref. [30]

[30] É. A. Enyedy, N. V. Nagy, É. Zsigó, C. R. Kowol, V. B. Arion, A. Roller, B. K. Keppler and T. Kiss, Eur. J. Inorg. Chem., 2010, 2010, 1717, DOI: 10.1002/ejic.200901174

Figure S1. a) UV-vis absorption spectra of Se-Triapine recorded at various pH values under strictly O₂-free condition. Calculated individual absorption spectra of ligand species in the case of b) Se-Triapine and c) Triapine. { $c_L = 95 \ \mu M$; 30% (w/w) DMSO/H₂O; pH = 2 - 12.2; T = 25 °C; I = 0.10 M (KCl); $\ell = 1.0 \ cm$ }.

Figure S2. UV-vis absorption spectra of Se-Triapine recorded at pH 7.4 under strictly O₂-free condition in the period 0-300 min and effect of O₂ purging. { $c_L = 85 \ \mu M$; 30% (w/w) DMSO/H₂O; pH = 7.4; T = 25 °C; I = 0.10 M (KCl); $\ell = 1.0 \ cm$ }.

Figure S3. ESI-MS spectrum of Se-Triapine at pH 3.0 immediately after dissolution in water and after 24 h (the framed spectrum). { $c_{L\sim} 25 \ \mu M$; positive mode}.

Figure S4. ¹H NMR spectra of Se-Triapine recorded at indicated pH values together with the notation of the symbols at the various peaks. The symbol * indicates the peaks of the decomposition product. { $c_L = 1.0 \text{ mM}$; $30\% (v/v) d_6$ -DMSO/H₂O; pH = 1.6 - 12.2; T = 25 °C; I = 0.10 M (KCl)}.

Fig. S5. 3D fluorescence spectra of a) O-Triapine, b) Se-Triapine and c) Me-Triapine recorded at pH 7.4. Excitation (black lines) and emission (blue dashed lines) spectra of d) O-Triapine, e) Se-Triapine and f) Me-Triapine. { $c_{\rm L} = 10 \ \mu\text{M}$; 30% (w/w) DMSO/H₂O; pH = 7.4; $T = 25 \ ^{\circ}\text{C}$; $I = 0.10 \ ^{\circ}\text{M}$ (KCl); $\ell = 1.0 \ \text{cm}$ }

Figure S6. UV-vis absorption spectra of a) O-Triapine, b) Se-Triapine and c) Me-Triapine recorded for the original solution before partitioning (black solid line), in the aqueous phase (black dashed line) and in the *n*-octanol phase (grey solid line) following the separation. { $c_{0.Triapine} = 63 \ \mu M$; $c_{Se-Triapine} = 100 \ \mu M$; $c_{Me-Triapine} = 50 \ \mu M$; $pH = 7.40 \ (20 \ mM \ HEPES)$; $T = 25 \ ^{\circ}C$; $I = 0.10 \ M \ (KCl)$; $\ell = 1.0 \ cm$ }.

Figure S7. pH-potentiometric titration curves for O-Triapine (ligand alone) and for Cu(II)–O-Triapine system at various metal-to-ligand ratios. { $c_{o:Triapine} = 1 mM$; 30% (w/w) DMSO/H₂O; T = 25 °C; I = 0.10 M (KCl)}.

Figure S8. Experimental (black) and simulated (red) solution EPR spectra recorded for the Cu(II)–O-Triapine a) (1:1) system and b) the calculated component EPR spectra of the species, and the (1:2) system at c) 295 K and d) 77 K at various pH values in 30% (v/v) DMSO-water solution. { $c_L = 1 mM$; $c_{Cu} = 1.0 \text{ or } 0.5 mM$; 30% (w/w) DMSO/H₂O; T = 25 °C; I = 0.10 M (KCl).

Figure S9. Experimental (black) and simulated (red) EPR spectra recorded for the Cu(II)–Se-Triapine system in 30% (v/v) DMSO-water solution at a) 1:1 and b) 1:2 metal-to-ligand ratio at 77 K at various pH values. { $c_L = 0.5 \ mM; \ c_{Cu} = 0.5 \ or \ 0.25 \ mM; \ 30\% \ (w/w) \ DMSO/H_2O; \ T = 25 \ ^{\circ}C; \ I = 0.10 \ M \ (KCl)$ c) Calculated component EPR spectra obtained for the Cu(II)–Se-Triapine complexes.

Fig. S10. a) UV-vis absorption spectra of Cu(II)–Me-Triapine (1:1) system recorded at various pH values (black solid lines) together with the molar absorbance spectra of the ligand species (dashed lines). b) Concentration distribution curves for the same system. { $c_{\rm L} = c_{\rm Cu} = 50 \,\mu\text{M}$; 30% (w/w) DMSO/H₂O; $T = 25 \,^{\circ}\text{C}$; $I = 0.10 \,\text{M}$ (KCl); $\ell = 1.0 \,\text{cm}$ }

Fig. S11. Time-dependence of UV-vis absorption spectra of Fe(III)–Me-Triapine (1:2) system recorded at pH 7.4 revealing the decomposition with time. { $c_L = 1 \text{ mM}$; 30% (w/w) DMSO/H₂O; T = 25 °C; I = 0.10 M (KCl); $\ell = 1.0 \text{ cm}$ }

Fig. S12. a) Cyclic voltammograms of Cu(II)–Se-Triapine (black line) and Cu(II)–Me-Triapine (grey line) system at 1:1 metal-to-ligand ratio. { $c_{\rm L} = c_{\rm Cu} = 0.5 \text{ mM}$; 70-30% (v/v) DMF/0.2 M HEPES (pH = 7.4); T = 25 °C; I = 0.10 M (KNO₃)} Time dependent changes of the UV-vis absorption spectra of b) Cu(II)–Se-Triapine, c) Cu(II)–O-Triapine and d) Cu(II)–Me-Triapine systems in the presence of 50 equiv. GSH at pH 7.4 in buffered aqueous solution under argon. { $c_{\rm L} = c_{\rm Cu} = 25 \ \mu\text{M}$; $c_{\rm GSH} = 1.25 \text{ mM}$; $c_{\rm HEPES} = 50 \text{ mM}$; T = 25 °C; I = 0.10 M (KCl); $\ell = 1.0 \text{ cm}$ }

Figure S13. Anisotropic EPR spectra recorded for the Cu(II)–Triapine system in the presence of a) 5 equiv. GSH and b) 20 equiv. ascorbic acid at pH 7.4 under aerobic conditions. { $c_{HEPES} = 50 \text{ mM}$; $T = 25 \,^{\circ}C$; I = 0.10 M (KCl)} 0 min: before the addition of the reducing agent. 2 min: the first spectrum recorded after the addition of GSH/ascorbic acid. Addition of GSH results in immediately low intensities, which was increased in time due to the re-oxidation of the Cu(II) centre. Addition of the ascorbic acid results in the shift of the peaks due to the formation of a ternary Cu(II)-Triapine-ascorbate complex, but then the signal intensity was not changed due to the lack of the reduction of Cu(II).

Figure S14. The ln A/A₀ values recorded at 370 nm plotted against the time (×) and the simulated curve (dashed line) for the Cu(II)–Se-Triapine system in the presence of 50 equiv. GSH at pH 7.4 in pure water under argon (A: actual absorbance, A₀: initial absorbance). $k_{obs} = 0.113 \text{ min}^{-1} (k_{obs} = 0.110 \text{ min}^{-1} \text{ for Cu(II)-Triapine complex [23]}). {<math>c_L = c_{Cu} = 25 \ \mu M$; $c_{GSH} = 1.25 \ mM$; $c_{HEPES} = 50 \ mM$; $T = 25 \ ^{\circ}C$; $I = 0.10 \ M \ (KCl)$; $\ell = 1.0 \ cm$ }

[23] S. Hager, V. F. S. Pape, V. Pósa, B. Montsch, L. Uhlik, G. Szakács, S. Tóth, N. Jabronka, B. K. Keppler, C. R. Kowol, É. A. Enyedy and P. Heffeter, Antioxid. Redox Signal., 2020, 33, 395, DOI: 10.1089/ars.2019.7854

Figure S15. Time dependent changes of the UV-vis absorption spectra of Fe(III)–Triapine (1:2) system in the presence of 100 equiv. ascorbate at pH 7.4 in pure water under argon and effect of O₂ bubbling (green dashed lines). { $c_L = 50 \ \mu M$; $c_{Fe(III)} = 25 \ \mu M$; $c_{ascorbic \ acid} = 2.5 \ mM$; $c_{HEPES} = 50 \ mM$; $T = 25 \ ^{\circ}C$; $I = 0.10 \ M \ (KCl)$; $\ell = 1.0 \ cm$ }