Pathway bifurcations in the cage rearrangement of metallacarboranes: experimental and computational evidence

Mikhail M. Vinogradov,*a Ivan D. Nesterov,^b Yulia V. Nelyubina,^a Alexander A. Pavlov^a

 ^a A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova str. 28, Moscow 119991, Russian Federation
 ^b N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninskii pr. 47, Moscow 119991, Russian Federation

SUPPORTING INFORMATION

Table of Contents	
Experimental Section	S2
NMR Spectra	S7
Single Crystal XRD (SC-XRD) data	S26
Computational Methods	S28

Experimental Section

General Considerations

All reactions were carried out under argon atmosphere using standard Schlenk techniques with subsequent work-up in air. All solvents were purified and degassed by standard procedures. Starting materials $1,2-(CH_2)_3-1,2-C_2B_{10}H_{10},^1$ NMe₄[7,8-(CH₂)_3-7,8-C₂B₉H₁₀],¹ 1,2-CH₂OCH₂-1,2-C₂B₁₀H₁₀,² [(cod)RhCl]₂³ and [(cod)IrCl]₂⁴ were prepared as described in the literature. The compound NMe₄[7,8-CH₂OCH₂-7,8-C₂B₉H₁₀] was prepared similar to preparation of NMe₄[7,8-(CH₂)_3-7,8-C₂B₉H₁₀]¹ from the corresponding 1,2-CH₂OCH₂-1,2-C₂B₁₀H₁₀ carborane. ¹H and ¹¹B{¹H} NMR spectra (δ in ppm) were recorded on a Bruker Avance-400 spectrometer operating at 400.13 and 128.38 MHz, respectively.

10-SMe₂-7,8-(CH₂)₃-7,8-*nido*-C₂B₉H₉ (1) and 10-SMe₂-7,8-CH₂OCH₂-7,8-C₂B₉H₁₀ (2) were prepared according to the modified method:⁵

A dark-red solution of 163 mg (1 mmol) of anhydrous FeCl₃ in 4 ml of dry benzene and 0.3 ml (4.1 mmol) of dimethyl sulfide was added dropwise over a period of 5 min to a preheated to 80 °C suspension of 100 mg (0.4 mmol) of NMe₄[7,8-(CH₂)₃-7,8-C₂B₉H₁₀] or NMe₄[7,8-CH₂OCH₂-7,8-C₂B₉H₁₀] in 3 ml of dry benzene. The reaction mixture was additionally stirred for 1 h at 80 °C, precipitated salts were filtered off and washed with benzene. After the evaporation of benzene *in vacuo* a residue was chromatographed on SiO₂ with a mixture CH₂Cl₂ – petroleum ether (1:1) as eluent. The solvent was removed *in vacuo* and the product was crystallized from toluene – heptane at –6 °C.

10-SMe₂-7,8-(CH₂)₃-7,8-*nido***-C₂B₉H₉ (1): yield 83 mg (88%). ¹H (CDCl₃) \delta: 2.55 (s, 6H, SMe₂), 2.26–2.18 (m, 2H, CH₂), 1.99–1.94 (m, 2H, CH₂), 1.75–1.66 (m, 1H, CH₂), 1.59–1.51 (m, 1H, CH₂), -0.49 ÷ -1.23 (m, 1H). ¹¹B{¹H} NMR (CDCl₃) \delta: -11.6 (2B), -14.7 (1B), -17.6 (2B), -19.3 (2B), -25.9 (1B, BSMe₂), -35.2 (1B). Anal. Calcd for C₇H₂₁B₉S: C, 35.84; H, 9.02%. Found: C, 36.35; H, 8.98%.**

10-SMe₂-7,8-CH₂OCH₂-7,8-C₂B₉H₉ (2): yield 42 mg (45%). ¹H (acetone-d₆) δ : 3.97 (d, 2H, CH₂, ²J_{HH} = 8.5 Hz), 3.72 (d, 2H, CH₂, ²J_{HH} = 8.5 Hz), 2.72 (s, 6H, SMe₂), -0.50 ÷ -1.35 (m, 1H). ¹¹B{¹H} NMR (acetone-d₆) δ : -12.8 (2B), -15.1 (1B), -18.2 (4B), -24.8 (1B, BSMe₂), -35.9 (1B). Anal. Calcd for C₆H₁₉B₉SO: C, 30.46; H, 8.09%. Found: C, 31.11; H, 8.11%.

9-SMe₂-7,8-(CH₂)₃-7,8-*nido*-C₂B₉H₉ (3) and 9-SMe₂-7,8-CH₂OCH₂-7,8-C₂B₉H₉ (4) were prepared according to the modified method:⁶

A mixture of 1,2-CH₂XCH₂-1,2-C₂B₁₀H₁₀ (X = CH₂ or O, 1.07 mmol) and KOH (200 mg, 3.57 mmol) was refluxed in ethanol (5 ml) for 6 hours. The clear mixture was cooled to room

temperature, diluted with a solution of NH₄Cl (200 mg, 3.74 mmol) in H₂O (5 ml) to neutralize the excess of KOH and dimethyl sulfide (1 ml) was added. After the addition of a solid $Fe(NO_3)_3 \times 9H_2O$ (1 g, 2.48 mmol) reaction was stirred for 24 h. The precipitated product was filtered off, washed with water and dried.

9-SMe₂-7,8-(CH₂)₃-7,8-*nido***-C₂B₉H₉ (3): yield 208 mg (88%). ¹H (acetone-d₆) \delta: 2.93 (s, 3H, SMe), 2.70 (s, 3H, SMe), 2.33–2.28 (m, 2H, CH₂), 2.00–1.91 (m, 2H, CH₂), 1.79–1.72 (m, 1H, CH₂), 1.60–1.52 (m, 1H, CH₂), -2.98 (br s, 1H). ¹¹B{¹H} NMR (acetone-d₆) \delta: -7.5 (1B), -8.4 (1B), -9.6 (1B), -16.7 (2B), -20.5 (1B), -29.2 (2B), -35.2 (1B). Anal. Calcd for C₇H₂₁B₉S: C, 35.84; H, 9.02%. Found: C, 35.18; H, 8.73%.**

9-SMe₂-7,8-CH₂OCH₂-7,8-C₂B₉H₉ (4): yield 171 mg (67%). ¹H (acetone-d₆) δ : 4.19 (d, 1H, CH₂, ²J_{HH} = 8.8 Hz), 4.07 (d, 1H, CH₂, ²J_{HH} = 8.1 Hz), 3.89 (d, 1H, CH₂, ²J_{HH} = 8.8 Hz), 3.83 (d, 1H, CH₂, ²J_{HH} = 8.1 Hz), 2.97 (s, 3H, SMe), 2.74 (s, 3H, SMe), -2.92 (br s, 1H). ¹¹B{¹H} NMR (acetone-d₆) δ : -7.4 (1B), -8.6 (1B), -9.9 (1B), -16.1 (1B), -17.7 (1B), -21.0 (1B), -28.7 (2B), -35.5 (1B). Anal. Calcd for C₆H₁₉B₉SO: C, 30.46; H, 8.09%. Found: C, 31.33; H, 8.02%.

Synthesis of rhoda- and iridacarborane complexes.

A solution of carborane (0.32 mmol) in THF (5 ml) was added carefully to a sodium hydride (hydrogen evoluation) and heated at 60 °C for 1 hour. The clear solution was decantated from exess of NaH, added to the mixture of TlPF₆ (112 mg, 0.32 mmol) and [(cod)MCl]₂ (0.15 mmol). After stirring the reaction mixture at 60 °C for 2 hours suspension was filtered, solution evaporated to drines *in vacuo* and products were crystallized from methanol as yellow or pale-yellow (rhodium and iridium complexes respectively) solids.

1,2-(CH₂)₃-3,3-(cod)-8-SMe₂-3,1,2-*closo***-RhC₂B₉H₈ (1a): yield 80%. ¹H (acetone-d₆) \delta: 4.17 (br s, 4H, CH-cod), 3.27–3.14 (m, 1H, CH₂-carb), 2.73–2.67 (m, 2H, CH₂-carb), 2.63 (s, 6H, SMe₂), 2.51–2.29 (m, 7H, CH₂ cod+carb), 2.17–2.11 (m, 4H, CH₂ cod+carb). ¹¹B{¹H} NMR (acetone-d₆) \delta: 6.5 (1B, BSMe₂), –12.7 (2B), –14.4 (2B), –15.8 (2B), –19.6 (2B). Anal. Calcd for C₁₅H₃₂B₉RhS: C, 40.51; H, 7.25%. Found: C, 40.41; H, 7.26%.**

1,2-(CH₂)₃-3,3-(cod)-8-SMe₂-3,1,2-*closo***-IrC₂B₉H₈ (1b): yield 60%. ¹H (acetone-d₆) \delta: 3.76 (br s, 4H, CH-cod), 2.91–2.81 (m, 1H, CH₂-carb), 2.69–2.65 (m, 4H, CH₂-cod), 2.54 (s, 6H, SMe₂), 2.36–2.21 (m, 6H, CH₂ cod+carb) 2.16–2.05 (m, 3H, CH₂ cod+carb). ¹¹B{¹H} NMR (acetone-d₆) \delta: 2.7 (1B, BSMe₂), -9.6 (1B), -12.7 (3B), -15.8 (2B), -19.5 (2B). Anal. Calcd for C₁₅H₃₂B₉IrS: C, 33.74; H, 6.04%. Found: C, 33.78; H, 6.09%.**

1,2-O(CH₂)₂-3,3-(cod)-8-SMe₂-3,1,2-*closo***-RhC₂B₉H₈ (2a): yield 57%. ¹H (acetone-d₆) \delta: 4.73 (d, 2H, CH₂-carb, ²J_{HH} = 8 Hz), 4.24 (br s, 4H, CH-cod), 4.20 (d, 2H, CH₂-carb, ²J_{HH} = 8 Hz), 2.68 (s, 6H, SMe₂), 2.46 (m, 4H, CH₂-cod), 2.14 (m, 4H, CH₂-cod). ¹¹B{¹H} NMR (acetone-d₆) \delta: 7.4 (1B, BSMe₂), -12.5 (1B), -13.8 (1B), -15.4 ÷ -16.2 (3B), -20.4 (3B). Anal. Calcd for C₁₄H₃₀B₉RhSO: C, 37.65; H, 6.77%. Found: C, 37.74; H, 6.56%.**

1,2-O(CH₂)₂-3,3-(cod)-8-SMe₂-3,1,2-*closo***-IrC₂B₉H₈ (2b): yield 52%. ¹H (CDCl₃) \delta: 4.68 (d, 2H, CH₂-carb, ²J_{HH} = 8.3 Hz), 4.47 (d, 2H, CH₂-carb, ²J_{HH} = 8.3 Hz), 3.87 (br s, 4H, CH-cod), 2.50 (s, 6H, SMe₂), 2.29 (m, 4H, CH₂-cod), 2.15 (m, 4H, CH₂-cod). ¹¹B{¹H} NMR (CDCl₃) \delta: 3.7 (1B, BSMe₂), -10.2 (1B), -14.2 ÷ -15.3 (5B), -20.9 (2B). Anal. Calcd for C₁₄H₃₀B₉IrSO: C, 31.37; H, 5.64%. Found: C, 31.32; H, 5.78%.**

1,2-(CH₂)₃-3,3-(cod)-4-SMe₂-3,1,2-*closo***-RhC₂B₉H₈ (3a): yield 56%. ¹H (CDCl₃) \delta: 4.33–4.29 (m, 2H, CH-cod), 3.91 (br s, 2H, CH-cod), 3.37–3.30 (m, 1H, CH₂-carb), 3.00 (s, 3H, SMe), 2.65–2.57 (m, 3H, CH₂ cod+carb), 2.54 (s, 3H, SMe), 2.42–2.31 (m, 5H, CH₂ cod+carb), 2.22–2.17 (m, 3H, CH₂ cod+carb), 2.02–1.96 (m, 2H, CH₂ cod+carb). ¹¹B{¹H} NMR (CDCl₃) \delta: –3.5 (1B), –7.8 (1B, BSMe₂), –11.7 (1B), –14.3 (2B), –16.0 ÷ –16.8 (3B), –20.5 (1B). Anal. Calcd for C₁₅H₃₂B₉RhS: C, 40.51; H, 7.25%. Found: C, 40.36; H, 7.28%.**

1,2-(CH₂)₃-3,3-(cod)-4-SMe₂-3,1,2-*closo***-IrC₂B₉H₈ (3b**): yield 82%. ¹H (CDCl₃) δ : 4.00–3.96 (m, 2H, CH-cod), 3.45–3.39 (m, 2H, CH-cod), 3.21–3.14 (m, 1H, CH₂-carb), 3.03–2.97 (m, 1H, CH₂-carb), 2.84 (s, 3H, SMe), 2.76–2.67 (m, 3H, CH₂ cod+carb), 2.54 (s, 3H, SMe), 2.50–2.34 (m, 4H, CH₂ cod+carb), 2.29–1.98 (m, 3H, CH₂ cod+carb), 1.80–1.71 (m, 2H, CH₂ cod+carb). ¹¹B{¹H} NMR (CDCl₃) δ : –5.6 (1B), –6.8 (1B, BSMe₂), –10.1 (1B), –11.3 (1B), –15.6 ÷ –16.3 (3B), –18.6 (1B)), –20.9 (1B). Anal. Calcd for C₁₅H₃₂B₉IrS: C, 33.74; H, 6.04%. Found: C, 33.75; H, 5.90%.

1,2-O(CH₂)₂-3,3-(cod)-4-SMe₂-3,1,2-*closo***-RhC₂B₉H₈ (4a): yield 75%. ¹H (acetone-d₆) \delta: 5.99 (d, 1H, CH₂-carb, ²J_{HH} = 8 Hz), 4.41–4.37 (m, 2H, CH-cod), 4.22 (d, 1H, CH₂-carb, ²J_{HH} = 8 Hz), 4.23–4.17 (m, 2H, CH-cod), 4.01 (br s, 2H, CH₂-carb), 3.12 (s, 3H, SMe), 2.75–2.65 (m, 2H, CH₂-cod), 2.66 (s, 3H, SMe), 2.51–2.45 (m, 2H, CH₂-cod), 2.36–2.22 (m, 2H, CH₂-cod), 1.96–1.81 (m, 2H, CH₂-cod). ¹¹B{¹H} NMR (acetone-d₆) \delta: -4.9 (1B), -5.8 (1B, BSMe₂), -11.8 (1B), -13.5 (2B), -14.7 (1B), -17.5 (1B), -18.7 (1B), -23.4 (1B). Anal. Calcd for C₁₄H₃₀B₉RhSO: C, 37.65; H, 6.77%. Found: C, 37.78; H, 6.53%.**

1,2-O(CH₂)₂-3,3-(cod)-4-SMe₂-3,1,2-*closo***-IrC₂B₉H₈ (4b): yield 90%. ¹H (CDCl₃) \delta: 4.82 (d, 1H, CH₂-carb, ²J_{HH} = 6.4 Hz), 4.42 (d, 1H, CH₂-carb, ²J_{HH} = 7.2 Hz), 4.14–4.11 (m, 3H, CH₂-carb+ CH-cod), 3.73–3.69 (m, 2H, CH-cod), 2.90 (s, 3H, SMe), 2.86–2.81 (m, 2H, CH₂-cod), 2.56 (s, 3H, SMe), 2.52–2.46 (m, 2H, CH₂-cod), 2.27–2.19 (m, 2H, CH₂-cod), 1.75–1.66 (m, 2H, CH₂-cod). ¹¹B{¹H} NMR (CDCl₃) \delta: –5.4 (2B, BSMe₂), –10.3**

(1B), -11.6 (1B), -13.8 (1B), -15.7 (2B), -21.2 (1B), -23.5 (1B). Anal. Calcd for C₁₄H₃₀B₉IrSO: C, 31.37; H, 5.64%. Found: C, 31.48; H, 5.60%.

Thermal isomerization of 1,2-(CH₂)₃-3,3-(cod)-4-SMe₂-3,1,2-IrC₂B₉H₈ (3b):

A solution of 1,2-(CH₂)₃-3,3-(cod)-4-SMe₂-3,1,2-IrC₂B₉H₈ (80 mg) in *o*-xylene (5 ml) was heated at 144 °C for 7 hours. The solvent was removed *in vacuo* and the residue was chromatographed on SiO₂ with a mixture benzene – petroleum ether (1:2) as eluent. Two mobile colourless bands were subsequently collected as solids after removal of the solvent *in vacuo* and crystallization from diethyl ether – petroleum ether.

1,2-(CH₂)₃-4,4-(cod)-8-SMe₂-4,1,2-*closo***-IrC₂B₉H (5): yield 7 mg (9%). ¹H (CDCl₃) \delta: 4.00–3.97 (m, 2H, CH-cod), 3.86–3.82 (m, 2H, CH-cod), 2.69–2.57 (m, 4H, CH₂ cod+carb), 2.54 (s, 3H, SMe), 2.40–2.15 (m, 8H, CH₂ cod+carb), 2.34 (s, 3H, SMe), 2.03–1.98 (m, 1H, CH₂ cod+carb), 0.92–0.86 (m, 1H, CH₂ carb). ¹¹B{¹H} NMR (CDCl₃) \delta: –0.3 (1B, BSMe₂), –5.9 (1B), –9.6 (2B), –11.1 (1B), –16.8 (1B), –20.0 (1B), –21.6 (1B), –22.0 (1B). Anal. Calcd for C₁₅H₃₂B₉IrS: C, 33.74; H, 6.04%. Found: C, 33.89; H, 6.14%.**

1,2-(CH₂)₃-4,4-(cod)-9-SMe₂-4,1,2-*closo***-IrC₂B₉H₈ (6): yield 10 mg (13%). ¹H (CDCl₃) \delta: 4.19–4.15 (m, 2H, CH-cod), 3.51–3.46 (m, 2H, CH-cod), 2.70–2.66 (m, 2H, CH₂ cod+carb), 2.60 (s, 3H, SMe), 2.46 (s, 3H, SMe), 2.38–1.86 (m, 12H, CH₂ cod+carb), 2.03–1.98 (m, 1H, CH₂ cod+carb), 0.92–0.86 (m, 1H, CH₂ carb). ¹¹B{¹H} NMR (CDCl₃) \delta: –3.57 (1B, BSMe₂), –7.3 (1B), –8.1 (1B), –9.7 (2B), –16.8 (1B), –18.1 (1B), –20.1 (1B), –23.3 (1B). Anal. Calcd for C₁₅H₃₂B₉IrS: C, 33.74; H, 6.04%. Found: C, 33.65; H, 6.11%.**

Thermal isomerization of 1,2-O(CH₂)₂-3,3-(cod)-4-SMe₂-3,1,2-*closo*-IrC₂B₉H₈ (4b):

A solution of 1,2-O(CH₂)₂-3,3-(cod)-4-SMe₂-3,1,2-*closo*-IrC₂B₉H₈ (100 mg) in *o*-xylene (5 ml) was heated at 135 °C for 4 hours. The solvent was removed *in vacuo* and the residue was chromatographed on SiO₂ with a mixture ethyl acetate – petroleum ether (1:2) as eluent. Four mobile colourless bands were subsequently collected as solids after removal of the solvent *in vacuo* and crystallization from diethyl ether – petroleum ether.

1,2-O(CH₂)₂-4,4-(cod)-8-SMe₂-4,1,2-*closo***-IrC₂B₉H₈ (7): yield 22 mg (22%). R_f = 0.49. ¹H (CDCl₃) \delta: 4.52 (d, 1H, CH₂-carb, ²J_{HH} = 8.5 Hz), 4.23 (d, 1H, CH₂-carb, ²J_{HH} = 8.5 Hz), 4.00 (d, 1H, CH₂-carb, ²J_{HH} = 8.5 Hz), 3.96(br s, 4H, CH-cod), 3.91 (d, 1H, CH₂-carb, ²J_{HH} = 8.5 Hz), 2.62–2.57 (m, 2H, CH₂-cod), 2.59 (s, 3H, SMe), 2.40–2.14 (m, 6H, CH₂-cod), 2.36 (s, 3H, SMe).**

¹¹B{¹H} NMR (CDCl₃) δ : -0.4 (1B, BSMe₂), -4.8 (1B), -9.4 (2B), -11.6 (1B), -16.4 (1B), -20.9 (1B), -22.4 (1B), -24.1 (1B). Anal. Calcd for C₁₅H₃₂B₉IrS: C, 33.74; H, 6.04%. Found: C, 33.89; H, 6.14%.

1,2-O(CH₂)₂-4,4-(cod)-9-SMe₂-4,1,2-*closo***-IrC₂B₉H₈ (8): yield 31 mg (31%). R_f = 0.33. ¹H (CDCl₃) \delta: 4.44 (d, 1H, CH₂-carb, ²J_{HH} = 8.2 Hz), 4.22–4.19 (m, 2H, CH-cod), 4.03–3.97 (m, 2H, CH-cod), 3.83 (d, 1H, CH₂-carb, ²J_{HH} = 8.2 Hz), 3.64 (br s, 2H, CH-cod), 2.80–2.65 (m, 2H, CH₂-cod), 2.63 (s, 3H, SMe), 2.50 (s, 3H, SMe), 2.45–2.38 (m, 2H, CH₂-cod), 2.30–2.20 (m, 4H, CH₂-cod). ¹¹B{¹H} NMR (CDCl₃) \delta: –3.5 (1B, BSMe₂), –6.7 (2B), –10.2 (2B), –16.3 (1B), –19.3 (1B), –20.8 (1B), –25.2 (1B). Anal. Calcd for C₁₅H₃₂B₉IrS: C, 33.74; H, 6.04%. Found: C, 33.81; H, 5.94%.**

1,2-O(CH₂)₂-4,4-(cod)-5-SMe₂-4,1,2-*closo***-IrC₂B₉H₈ (9): yield 10 mg (10%). R_f = 0.11. ¹H (CD₂Cl₂) \delta: 4.28 (d, 1H, CH₂-carb, ²J_{HH} = 8.2 Hz), 3.85–3.79 (m, 3H, CH₂-carb+CH-cod), 3.73–3.68 (m, 2H, CH-cod), 3.44 (d, 1H, CH₂-carb, ²J_{HH} = 9.6 Hz), 3.10–3.05 (m, 2H, CH₂-cod), 2.99 (d, 1H, CH₂-carb, ²J_{HH} = 9.6 Hz), 2.89 (s, 3H, SMe), 2.67 (s, 3H, SMe), 2.64–2.57 (m, 2H, CH₂-cod), 2.43–2.35 (m, 2H, CH₂-cod), 2.08–2.00 (m, 2H, CH₂-cod). ¹¹B{¹H} NMR (CD₂Cl₂) \delta: –1.7 (1B), –5.8 (1B), –6.5 (1B), –9.0 (2B), –16.9 (1B), –22.0 (1B), –22.8 (1B), –23.8 (1B). Anal. Calcd for C₁₅H₃₂B₉IrS: C, 33.74; H, 6.04%. Found: C, 33.66; H, 5.93%.**

1,2-O(CH₂)₂-3,3-(cod)-8-SMe₂-3,1,2-*closo*-IrC₂B₉H₈ (2b): yield 5 mg (5%). $R_f = 0.43$.

NMR Spectra

Figure S1. The ¹H NMR spectrum of 1 in CDCl₃.

Figure S2. The ${}^{11}B{}^{1}H{}$ NMR spectrum of 1 in CDCl₃.

Figure S3. The ¹H NMR spectrum of **2** in acetone- d_6 .

Figure S4. The ${}^{11}B{}^{1}H{}$ NMR spectrum of 2 in acetone-d₆.

Figure S5. The ¹H NMR spectrum of 3 in acetone-d₆.

Figure S6. The ${}^{11}B{}^{1}H{}$ NMR spectrum of 3 in acetone-d₆.

Figure S7. The ¹H NMR spectrum of 4 in acetone-d₆.

Figure S8. The ${}^{11}B{}^{1}H{}$ NMR spectrum of 4 in acetone-d₆.

Figure S9. The ¹H NMR spectrum of **1a** in acetone-d₆.

ure S10. The ${}^{11}B{}^{1}H$ NMR spectrum of 1a in acetone-d₆.

Figure S11. The ¹H NMR spectrum of 1b in acetone-d₆.

Figure S12. The ${}^{11}B{}^{1}H$ NMR spectrum of 1b in acetone-d₆.

Figure S13. The ¹H NMR spectrum of 2a in acetone-d₆.

re S14. The ¹¹B $\{^{1}H\}$ NMR spectrum of 2a in acetone-d₆.

Figure S15. The ¹H NMR spectrum of 2b in acetone-d₆.

Figure S16. The ${}^{11}B{}^{1}H{}$ NMR spectrum of 2b in acetone-d₆.

Figure S17. The ¹H NMR spectrum of **3a** in CDCl₃.

Figure S18. The ${}^{11}B{}^{1}H{}$ NMR spectrum of 3a in CDCl₃.

Figure S19. The ¹H NMR spectrum of **3b** in CDCl₃.

Figure S20. The ${}^{11}B{}^{1H}$ NMR spectrum of 3b in CDCl₃.

Figure S21. The ¹H NMR spectrum of 4a in acetone-d₆.

Figure S22. The ${}^{11}B{}^{1H}$ NMR spectrum of 4a in acetone-d₆.

Figure S23. The ¹H NMR spectrum of 4b in CDCl₃.

Figure S24. The ${}^{11}B{}^{1H}$ NMR spectrum of 4b in CDCl₃.

Figure S25. The ¹H NMR spectrum of 5 in CDCl₃.

Figure S26. The ¹¹B{¹H} NMR spectrum of 5 in CDCl₃.

Figure S27. The ¹H NMR spectrum of 6 in CDCl₃.

Figure S28. The ${}^{11}B{}^{1H}$ NMR spectrum of 6 in CDCl₃.

Figure S29. The ${}^{11}B{}^{1}H{} - {}^{11}B{}^{1}H{}$ COSY NMR spectrum of 6 in CDCl₃.

Figure S30. The ¹H NMR spectrum of 7 in CDCl₃.

Figure S31. The ¹¹B{¹H} NMR spectrum of 7 in CDCl₃.

Figure S32. The ¹H NMR spectrum of 8 in CDCl₃.

Figure S33. The ¹¹B{¹H} NMR spectrum of 8 in CDCl₃.

Figure S34. The ${}^{11}B{}^{1}H{} - {}^{11}B{}^{1}H{}$ COSY NMR spectrum of 8 in CDCl₃.

Figure S35. The ¹H NMR spectrum of 9 in CD_2Cl_2 .

Figure S36. The ${}^{11}B{}^{1H}$ NMR spectrum of 9 in CD₂Cl₂.

Figure S37. The ${}^{11}B{}^{1}H{} - {}^{11}B{}^{1}H{}$ COSY NMR spectrum of 9 in CD₂Cl₂.

Single Crystal XRD (SC-XRD) data

Crystals of **5**, **6** and **8** were grown by slow gas phase diffusion of petroleum ether into a solution of complexes in C_6H_6 -CH₂Cl₂ mixture. X-ray diffraction data were collected at 120 with Bruker Apex2 DUO diffractometer using graphite monochromated Mo-K α radiation ($l\lambda = 0.71073$ Å, ω -scans). Using Olex2,⁷ the structures were solved with the ShelXT⁸ structure solution program using Intrinsic Phasing and refined with the XL⁹ refinement package using Gauss-Newton minimisation. Hydrogen atoms of the BH groups were found in difference Fourier synthesis while positions of others were calculated, and they all were refined in the isotropic approximation within the riding model. Crystallographic data and structure refinement parameters are given in Table S1. CCDC 2019951, 2019952 and 2019950 contain the supplementary crystallographic data for **5**, **6** and **8** respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Compound	5	6	8
Empirical formula	C ₁₅ H ₃₂ B ₉ IrS	C ₁₅ H ₃₂ B ₉ IrS	C ₁₄ H ₃₀ B ₉ IrOS
Formula weight	533.95	533.95	535.93
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_{l}/c$	$P2_1/c$	$P2_1/n$
<i>a</i> (Å)	16.9917(14)	7.7089(9)	7.6152(4)
<i>b</i> (Å)	14.5337(12)	15.4832(18)	15.4766(8)
<i>c</i> (Å)	16.3704(13)	17.075(2)	16.6390(8)
β (°)	99.389(2)	94.072(2)	97.3260(10)
$V(Å^3)$	3988.5(6)	2032.9(4)	1945.02(17)
$D_{\rm calc} ({ m g \ cm^{-3}})$	1.778	1.745	1.830
Linear absorption, μ (cm ⁻³)	67.96	66.67	69.72
F(000)	2080	1040	1040
20 _{max} , °	52	52	54
Reflections measured	63723	19576	16954
Independent reflections	6862 ($R_{\rm int}$ =	4002 ($R_{\rm int}$ =	4247 ($R_{\rm int}$ =
	0.0291)	0.0326)	0.0532)
Observed reflections $(I > 2\sigma(I))$	7844	3630	3442
Parameters	473	237	237

Table S1. Crystallographic data and structure refinement parameters for 5, 6 and 8.

R_1 (on F for obs. refls)	0.0166	0.0185	0.0246
wR_2 (on F2 for all refls)	0.0399	0.0426	0.0554
Goodness-of-fit	1.029	1.059	1.032
Largest diff. peak and hole (e $Å^{-3}$)	1.105 and -0.472	1.951 and -0.399	0.878 and -0.880

Computational Methods

All calculations were performed using Orca programm (version 4.2.1)¹⁰ on PBE/def2-TZVP¹¹ level on all atoms with ECP on iridium atom (TightOpt, TightScf and Grid4 options were used). The geometry optimizations were carried out without symmetry constraints, and analytical hessians were computed to confirm the nature of the stationary points to yield one imaginary frequency for the transition states and none for the minima. The nature of all transition states was investigated by the analysis of vectors associated with the imaginary frequency and by the calculations of the Intrinsic Reaction Roordinate (IRC).¹² The ChemCraft program¹³ was used for molecular modeling and visualization.

- ¹ T. E. Paxson, M. K. Kaloustian, G. M. Tom, R. J. Wiersema, M. F. Hawthorne, *J. Am. Chem. Soc.* **1972**, *94*, 14, 4882–4888.
- ² D. Grafstein, J. Bobinski, J. Dvorak, H. Smith, N. Schwartz, M. S. Cohen, M. M. Fein, *Inorg. Chem.* **1963**, *2*, 1120–1125.
- ³ G. Giordano, R. H. Crabtree, *Inorg. Synth.* 1979, 19, 218–219.
- 4 R. H. Crabtree, J. M. Quirk, H. Felkin, T. Fillebeen-Khan, Synth. React. Inorg. Met. Org. Chem. 1982, 12, 407–413.
- ⁵ D. C. Young, D. V. Howe, M. F. Hawthorne, J. Am. Chem. Soc. 1969, 91, 859–862.
- ⁶ B. Grüner, J. Holub, J. Plešek, B. Štíbr, M. Thornton-Pett, J.D. Kennedy, *J. Chem. Soc., Dalton Trans.* **2007**, 4859–4865.
- ⁷ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *J. Appl. Cryst.* **2009**, *42*, 339–341.
- ⁸ G. M. Sheldrick, Acta Cryst. A 2015, 71, 3-8.
- ⁹ G. M. Sheldrick, Acta Cryst. A 2008, 64, 112–122.
- 10 a) F. Neese, *WIREs Comput. Mol. Sci.* **2012**, *2*, 73–78; b) F. Neese, *WIREs Comput. Mol. Sci.* **2017**, *8*, e1327.
- ¹¹ a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305; b) J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.* **1996**, *177*, 3865–3868.
- ¹² C. Gonzalez, H. B. Schlegel, J. Chem. Phys. 1991, 95, 5853-5860.
- ¹³ G. A. Zhurko, *ChemCraft 1.6*, http://www.chemcraftprog.com, **2008**.