Supporting information for:

Reactions of Rh(PNP) pincer complexes with terminal alkynes: homocoupling through a ring or not at all

Table of contents

1.	General experimental methods	1
2.	Reaction of [Rh(PNP-tBu)(CCH <i>t</i> Bu)][BAr ^F ₄] (II) with excess HC≡C <i>t</i> Bu	2
3.	Deprotection of <i>cis</i> -PNP-14·2BH ₃ : preparation of <i>cis</i> -PNP-14	3
4.	$[Rh(PNP-14)(\eta^2-COD)][BAr^{F_4}] (\mathbf{1'}) \text{ and } [\{Rh(PNP-14)\}_2(\mu_2-\eta^2:\eta^2-COD)][BAr^{F_4}]_2(\mathbf{1''})\dots$	4
5.	Synthesis and reactions of [Rh(<i>trans</i> -PNP-14)(CCH <i>t</i> Bu)][BAr ^F ₄] (2a)	. 11
6.	Synthesis, isolation and reactions of [Rh(<i>cis</i> -PNP-14)(CCH <i>t</i> Bu)][BAr ^F ₄] (2b)	. 17
7.	Preparation of [Rh(<i>trans</i> -PNP-14)(<i>E</i> - <i>t</i> BuC≡CCHCH <i>t</i> Bu)][BAr ^F ₄] (3a)	. 24
8.	Reaction of {Rh(<i>trans</i> -PNP-14)}⁺ (1a) with <i>E-t</i> BuC≡CCHCH <i>t</i> Bu	. 26
9.	Preparation of [Rh(<i>cis</i> -PNP-14)(CO)][BAr ^F ₄] (4b)	. 33
10.	Preparation of [Rh(<i>trans</i> -PONOP-14)(<i>E-t</i> BuC≡CCHCH <i>t</i> Bu)][BAr ^F ₄]	. 36
11.	References	. 39

1. General experimental methods

All manipulations were performed under an atmosphere of argon using Schlenk and glove box techniques unless otherwise stated. Glassware was oven dried at 150 °C overnight and flame-dried under vacuum prior to use. Molecular sieves were activated by heating at 300 °C in vacuo overnight. 1,2-Difluorobenzene (DFB) was pre-dried over Al₂O₃, distilled from calcium hydride and dried twice over 3 Å molecular sieves. CD₂Cl₂ was freeze-pump-thaw degassed and dried over 3 Å molecular sieves. C₆D₆ was distilled from sodium and stored over 3 Å molecular sieves. Et₂NH was distilled from CaH₂. SiMe₄ was distilled from liquid Na/K alloy and stored over a potassium mirror. Other anhydrous solvents were purchased from Acros Organics or Sigma-Aldrich, freeze-pump-thaw degassed and stored over 3 Å molecular sieves. 3,3-dimethylbutyne (HC≡CtBu) and 1,5cyclooctadiene (COD) were freeze-pump-thaw degassed and stored over 3 Å molecular sieves. [Rh(PNP-*t*Bu)(CCH*t*Bu)][BAr^F₄],¹ *cis*-PNP-14·2BH₃,² *trans*-PNP-14,² [Rh(COD)₂][BAr^F₄],³ 3,3dimethylbut-1-yne- d_1 (DC=CtBu),⁴ E-tBuC=CCHCHtBu,⁵ and [Rh(trans-PONOP-14)(C₂H₄)][BAr^F₄]² were synthesized according to published procedures. All other reagents are commercial products and were used as received. NMR spectra were recorded on Bruker spectrometers under argon at 298 K unless otherwise stated. Chemical shifts are quoted in ppm and coupling constants in Hz. NMR spectra in DFB were recorded using an internal capillary of C₆D₆. High resolution (HR) ESI-MS were recorded on Bruker Maxis Plus instrument. IR spectra were recorded on a Jasco FT-IR-4700 using a KBr transmission cell in CH₂Cl₂. Microanalyses were performed at the London Metropolitan University by Stephen Boyer or Elemental microanalysis Ltd.

2. Reaction of [Rh(PNP-tBu)(CCH*t*Bu)][BAr^F₄] (II) with excess HC≡C*t*Bu

To a solution of **II** (20.4 mg, 14.1 μ mol) in DFB (0.5 mL) within a J. Young valve NMR tube was added HC=C*t*Bu (2.6 μ L, 21.1 μ mol). The resulting solution was heated at 80 °C for 16 h. Analysis by ¹H and ³¹P NMR spectroscopy indicated no significant reaction had occurred.

80 °C for 16 h (DFB, 162 MHz).

3. Deprotection of *cis*-PNP-14·2BH₃: preparation of *cis*-PNP-14

A solution of *cis*-PNP-14·2BH₃ (5.0 mg, 9.89 μ mol) in Et₂NH (0.5 mL) was heated at 85 °C for 2 days within a J Young valve NMR tube. Quantitative conversion was observed by ¹H and ³¹P NMR spectroscopy. The volatiles were removed *in vacuo* to afford the product as a colourless oil, which was carried forward without further purification.

¹H NMR (500 MHz, C₆D₆): δ 7.08–7.15 (m, 3H, py), 3.07 (d, ²J_{HH} = 13.3, 2H, pyC<u>H</u>₂), 3.01 (d, ²J_{HH} = 13.3, 2H, pyC<u>H</u>₂), 1.57–1.67 (m, 2H, CH₂), 1.22–1.55 (m, 26H, CH₂), 1.02 (d, ³J_{PH} = 11.1, 18H, *t*Bu). ¹³C{¹H} NMR (126 MHz, C₆D₆): δ 160.2 (d, ²J_{PC} = 9, py), 136.1 (s, py), 120.8 (d, ³J_{PC} = 8, py), 35.5 (d, ¹J_{PC} = 23, py<u>C</u>H₂), 30.8 (d, ³J_{PC} = 12, CH₂), 28.3–28.6 (m, 4×CH₂ + *t*Bu{C}), 27.6 (d, ²J_{PC} = 13, *t*Bu{CH₃}), 27.0 (d, ²J_{PC} = 18, CH₂), 24.2 (d, ¹J_{PC} = 19, PCH₂). ³¹P{¹H} NMR (121 MHz, C₆D₆): δ 5.9 (s, 2P).

4. [Rh(PNP-14)(η^2 -COD)][BAr^F₄] (1') and [{Rh(PNP-14)}₂(μ_2 - η^2 : η^2 -COD)][BAr^F₄]₂ (1'')

4.1. Reaction between *trans*-PNP-14 and $[Rh(COD)_2][BAr^{F_4}]$

A solution of *trans*-PNP-14 (5.4 mg, 11.3 μ mol) and [Rh(COD)₂][BAr^F₄] (13.3 mg, 11.2 μ mol) in DFB (0.5 mL) within a J. Young valve NMR tube was stirred for 5 min at RT. Analysis by ¹H and ³¹P NMR spectroscopy indicated formation **1a'** as the major (>95%) organometallic species alongside liberation of COD into solution.

4.2. Characteristion of [Rh(*trans*-PNP-14)(η^2 -COD)][BAr^F₄] (1a')

A solution of *trans*-PNP-14 (5.4 mg, 11.3 μ mol) and [Rh(COD)₂][BAr^F₄] (13.3 mg, 11.2 μ mol) in DFB (0.5 mL) within a J. Young valve NMR tube was stirred for 5 min at RT and COD (14 μ L, 114 μ mol) added resulting in the quantitative formation of **1a'**, which was characterised *in situ* by NMR spectroscopy.

¹**H NMR** (500 MHz, DFB, selected data): δ 7.47 (t, ³*J*_{HH} = 7.8, 1H, py), 7.12 (d, ³*J*_{HH} = 7.8, 1H, py), 7.08 (d, ³*J*_{HH} = 7.8, 1H, py), 5.56–5.61 (m, 2H, CH=CH), 5.12–5.22 (m, 1H, Rh(CH=CH)), 4.05–4.12 (m, 1H, Rh(CH=CH)), 3.42 (dd, ²*J*_{HH} = 17.1, ²*J*_{PH} = 6.4, 1H, pyC<u>H</u>₂), 3.35 (ddd, ²*J*_{HH} = 17.1, ²*J*_{PH} = 13.1, ⁴*J*_{PH} = 2.6, 1H, pyC<u>H</u>₂), 3.25 (dd, ²*J*_{HH} = 16.6, ²*J*_{PH} = 10.4, 1H, pyC<u>H</u>₂), 3.09 (dd, ²*J*_{HH} = 16.9, ²*J*_{PH} = 7.4, 1H, pyC<u>H</u>₂), 0.86 (d, ³*J*_{PH} = 13.6, 9H, *t*Bu), 0.76 (d, ³*J*_{PH} = 13.5, 9H, *t*Bu).

¹³C{¹H} NMR (126 MHz, DFB): δ 163.2 (obscured, py), 161.1 (d, ${}^{2}J_{PC}$ = 6, py), 139.2 (s, py), 129.5 (obscured, CH=CH), 120.6 (d, ${}^{3}J_{PC}$ = 9, py), 120.1 (d, ${}^{3}J_{PC}$ = 8, py), 81.2 (d, ${}^{1}J_{RhC}$ = 12, Rh(CH=CH)), 66.9 (d, ${}^{1}J_{RhC}$ = 10, Rh(CH=CH)), 39.0 (d, ${}^{1}J_{PC}$ = 21, py<u>C</u>H₂), 37.4 (d, ${}^{1}J_{PC}$ = 17, py<u>C</u>H₂), 33.5 (d, ${}^{1}J_{PC}$ = 21, *t*Bu{C}), 32.0–32.3 (m, *t*Bu{C}), 27.6 (d, ${}^{2}J_{PC}$ = 4, *t*Bu{CH₃}), 25.9 (d, ${}^{2}J_{PC}$ = 6, *t*Bu{CH₃}).

³¹**P**{¹**H**} **NMR** (121 MHz, DFB): δ 57.4 (dd, ²*J*_{PP} = 312, ¹*J*_{RhP} = 131, 1P), 45.9 (dd, ²*J*_{PP} = 312, ¹*J*_{RhP} = 138, 1P).

4.3. Isolation and crystal structure of [{Rh(*trans*-PNP-14)}₂(μ_2 - η^2 : η^2 -COD)][BAr^F₄]₂ (1a") A solution of *trans*-PNP-14 (15.2 mg, 31.8 µmol) and [Rh(COD)₂][BAr^F₄] (37.7 mg, 31.9 µmol) in DFB (0.5 mL) was stirred for 5 min at RT. Volatiles were removed in vacuo and the resulting red oil was washed with pentane (1 mL). The product was obtained as a red crystalline solid by slow diffusion of pentane into an Et₂O solution at -30 °C Yield: 35.4 mg (11.8 µmol, 74%).

Anal. Calcd for C₁₃₀H₁₄₂B₂F₄₈N₂P₄Rh₂ (2995.8 gmol⁻¹): C, 52.12; H, 4.78; N, 0.94. Found: C, 52.31; H, 4.78; N, 1.02.

Figure S11. Solid-state structure of 1a": thermal ellipsoids drawn at 30% probability, minor disordered component (part of methylene chain), anions, solvent, and most hydrogen atoms omitted. Starred atoms are generated by the symmetry operation: 1–*x*, –*y*, –*z*. Selected bond lengths (Å) and angles (deg): Rh1-P2, 2.2770(12); Rh1-P3, 2.3562(11); Rh1-N101, 2.113(4); P2-Rh1-P3, 155.58(4); Rh1-Cnt(C4,C5), 2.052(3); C4-C5, 1.391(6); N101-Rh1-Cnt(C4,C5), 160.5(2); Cnt = centroid.

4.4. Reaction between *cis*-PNP-14 and [Rh(COD)₂][BAr^F₄]

A solution of *cis*-PNP-14 (7.0 mg, 14.7 μ mol) and [Rh(COD)₂][BAr^F₄] (17.3 mg, 14.6 μ mol) in DFB (0.5 mL) within a J. Young valve NMR tube was stirred for 5 min at RT. Analysis by ¹H and ³¹P NMR spectroscopy indicated formation **1b'** as the major (>95%) organometallic species alongside liberation of COD into solution.

4.5. Characterisation of [Rh(*cis*-PNP-14)(η^2 -COD)][BAr^F₄] (1b')

A solution of *cis*-PNP-14 (7.0 mg, 14.7 μ mol) and [Rh(COD)₂][BAr^F₄] (17.3 mg, 14.6 μ mol) in DFB (0.5 mL) within a J. Young valve NMR tube was stirred for 5 min at RT and COD (18.0 μ L, 147 μ mol) added resulting in quantitative formation of **1b'**, which was characterised *in situ* by NMR spectroscopy.

¹**H NMR** (500 MHz, DFB, selected data): δ 7.52 (t, ³*J*_{HH} = 7.8, 1H, py), 7.18 (d, ³*J*_{HH} = 7.8, 2H, py), 5.56 (t, ³*J*_{HH} = 3.9, 2H, CH=CH), 4.57 (br, 2H, Rh(CH=CH)), 3.30 (dvt, ²*J*_{HH} = 17.0, *J*_{PH} = 3.8, 2H, pyC<u>H</u>₂), 3.20 (dvt, ²*J*_{HH} = 17.0, *J*_{PH} = 3.9, 2H, pyC<u>H</u>₂), 0.99 (vt, *J*_{PH} = 7, 18H, *t*Bu).

¹³C{¹H} NMR (126 MHz, DFB, selected data): δ 162.3 (vt, J_{PC} = 3, py), 139.9 (s, py), 129.6 (s, CH=CH), 121.0 (vt, J_{PC} = 9, py), 72.7 (d, ¹ J_{RhC} = 12, Rh(CH=CH)), 37.3 (vt, J_{PC} = 9, py<u>C</u>H₂), 32.2 (vt, J_{PC} = 11, *t*Bu{C}), 26.8 (s, *t*Bu{CH₃}).

³¹**P**{¹**H**} **NMR** (162 MHz, DFB): δ 46.8 (br d, ¹*J*_{RhP} = 134).

4.6. Isolation and crystal structure of [{Rh(*cis*-PNP-14)}₂(μ_2 - η^2 : η^2 -COD)][BAr^F₄]₂ (1b")

A solution of *cis*-PNP-14 (10.6 mg, 22.2 μ mol) and [Rh(COD)₂][BAr^F₄] (26.2 mg, 22.2 μ mol) in DFB (0.5 mL) was stirred for 5 min at RT. Volatiles were removed in vacuo and the resulting red oil was washed with pentane (1 mL). The product was obtained as a red crystalline solid by slow diffusion of pentane into an Et₂O solution at -30 °C. Yield: 28.9 mg (9.65 μ mol, 87%).

Anal. Calcd for C₁₃₀H₁₄₂B₂F₄₈N₂P₄Rh₂ (2995.8 gmol⁻¹): C, 52.12; H, 4.78; N, 0.94. Found: C, 52.03; H, 4.50; N, 1.17.

Figure S17. Solid-state structure of **1b**": thermal ellipsoids drawn at 30% probability, anions and most hydrogen atoms omitted. Low quality data; for establishing connectivity only.

5. Synthesis and reactions of [Rh(*trans*-PNP-14)(CCH*t*Bu)][BAr^F₄] (2a)

5.1. Reaction of 1a with HC≡C*t*Bu

A solution of *trans*-PNP-14 (6.1 mg, 12.8 μ mol) and [Rh(COD)₂][BAr^F₄] (15.0 mg, 12.7 μ mol) in DFB (0.5 mL) within a J. Young valve NMR tube was mixed for 5 min at RT and HC≡C*t*Bu (4.0 μ L, 32.5 μ mol) added forming a deep green solution. Analysis by ¹H and ³¹P NMR spectroscopy indicated quantitative formation of **2a**.

Figure S18. ¹H NMR spectrum of the reaction between 1a and HC=CtBu (DFB, 300 MHz).

Figure S19.³¹P{¹H} NMR spectrum of the reaction between **1a** and HC≡C*t*Bu (DFB, 121 MHz).

5.2. Characterisation of 2a in situ

A solution of *trans*-PNP-14 (8.3 mg, 17.4 μ mol) and [Rh(COD)₂][BAr^F₄] (20.6 mg, 17.4 μ mol) in DFB (0.5 mL) within a J. Young valve NMR tube was mixed for 5 min and HC≡C*t*Bu (10.7 μ L, 86.9 μ mol) added forming a deep green solution and resulting in quantitative formation of **2a**, which characterised *in situ* by NMR spectroscopy. The presence of excess alkyne in this case increases the solution-phase stability of **2a**, facilitating characterisation.

¹**H NMR** (500 MHz, DFB, selected data): δ 7.50 (obscured, py), 7.20 (d, ${}^{3}J_{HH}$ = 7.8, 1H, py), 7.15 (d, ${}^{3}J_{HH}$ = 7.8, 1H, py), 3.48–3.61 (m, 2H, pyC<u>H</u>₂), 3.25–3.39 (m, 2H, pyC<u>H</u>₂), 2.09 (s, 1H, CC<u>H</u>*t*Bu), 1.07 (s, 9H CCH<u>*t*Bu</u>), 1.05 (d, ${}^{3}J_{PH}$ = 14.3, 9H, P*t*Bu), 0.93 (d, ${}^{3}J_{PH}$ = 13.7, 9H, P*t*Bu).

¹³C{¹H} NMR (126 MHz, DFB, selected data): δ 323.7 (partially resolved dt, ¹*J*_{RhC} = 57, ²*J*_{PC} not resolved, <u>C</u>CH*t*Bu), 163 (obscured, py), 141.3 (s, py), 121.1 (d, ³*J*_{PC} = 8, py), 120.8 (d, ³*J*_{PC} = 9, py), 120.5 (dt, ²*J*_{RhC} = 15, ³*J*_{PC} = 5, C<u>C</u>H*t*Bu), 39.2 (d, ¹*J*_{PC} = 19, py<u>C</u>H₂), 36.5 (d, ¹*J*_{PC} = 17, py<u>C</u>H₂), 28.3 (d, ²*J*_{PC} = 5, P*t*Bu{CH₃}), 26.6 (d, ²*J*_{PC} = 5, P*t*Bu{CH₃}).

³¹**P**{¹**H**} **NMR** (121 MHz, DFB): δ 58.6 (dd, ²*J*_{PP} = 312, ¹*J*_{RhP} = 142, 1P), 50.8 (dd, ²*J*_{PP} = 312, ¹*J*_{RhP} = 137, 1P).

5.3. Reaction of 2a with excess HC≡CtBu

A solution of **2a** in DFB (0.5 mL) with excess HC=C*t*Bu (1.5 equiv.) within a J. Young valve NMR tube was prepared as described above using *trans*-PNP-14 (8.2 mg, 17.2 µmol), [Rh(COD)₂][BAr^F₄] (20.3 mg, 17.2 µmol) and HC=C*t*Bu (5.3 µL, 43.0 µmol). The solution was heated at 80 °C for 16 h forming a yellow solution. Analysis by ¹H and ³¹P NMR spectroscopy indicated quantitative formation of **3a**.

¹**H NMR** (400 MHz, DFB, selected data): δ 7.52 (t, ³*J*_{HH} = 7.8, 1H, py), 7.36 (d, ³*J*_{HH} = 15.5, 1H, CH=C<u>H</u>*t*Bu), 5.89 (d, ³*J*_{HH} = 15.5, 1H, C<u>H</u>=CH*t*Bu), 3.33–3.43 (m, 3H, pyC<u>H</u>₂), 3.24 (dd, ²*J*_{HH} = 15.9, ²*J*_{PH} = 9.5, 1H, pyC<u>H</u>₂), 1.57 (s, 9H, C≡C*t*Bu), 1.11 (s, 9H, CH=CH*<u>t</u>Bu), 0.82 (d, ³<i>J*_{PH} = 12.5, 9H, P*t*Bu), 0.70 (d, ³*J*_{HH} = 12.4, 9H, P*t*Bu).

³¹**P**{¹**H**} **NMR** (162 MHz, DFB): δ 56.6 (dd, ²*J*_{PP} = 393, ¹*J*_{RhP} = 133, 1P), 51.0 (dd, ²*J*_{PP} = 392, ¹*J*_{RhP} = 129, 1P).

after heating at 80 °C for 16 h (DFB, 400 MHz).

5.4. Reaction of 2a with excess DC≡C*t*Bu

A solution of **2a** in DFB (0.5 mL) within a J. Young valve NMR tube was prepared as described above using *trans*-PNP-14 (6.6 mg, 13.8 µmol), [Rh(COD)₂][BAr^F₄] (16.4 mg, 13.9 µmol) and HC≡C*t*Bu (1.9 µL, 15.4 µmol). To this solution DC≡C*t*Bu (17.0 µL, 136 µmol) was added and the resulting solution heated at 80 °C for 16 h. Volatiles were removed under vacuum, the residue washed with SiMe₄, and then analysed by ¹H NMR spectrposcopy and HR ESI-MS, with both indicating 83% D incorporation into the enyne core.

¹**H NMR** (500 MHz, CD₂Cl₂, selected data): *δ* 7.40–7.42 (m, 0.18H, CX=C<u>H</u>*t*Bu), 5.95–6.00 (m, 0.17H, C<u>H</u>=CX*t*Bu).

14

Figure S26. HR ESI-MS of the reaction between **2a** and DC=C*t*Bu. Fitting gives $3.1\% [d_0-M]^+$, $23.5\% [d_1-M]^+$, and $73.4\% [d_2-M]^+$.

5.5. Reaction of 2a with CO

A solution of **2a** in DFB (0.5 mL) within a J. Young valve NMR tube was prepared as described above using *trans*-PNP-14 (4.3 mg, 9.0 μ mol), [Rh(COD)₂][BAr^F₄] (10.6 mg, 8.96 μ mol) and HC≡C*t*Bu (1.2 μ L, 9.74 μ mol). This solution was freeze-pump-thaw degassed and placed under an atmosphere of carbon monoxide (1 atm). Analysis by ¹H and ³¹P NMR spectroscopy indicated quantitative formation of **4a** and liberation of free alkyne within 30 min, by comparison to literature values for the complex.²

³¹**P**{¹**H**} **NMR** (162 MHz, DFB): δ 67.0 (d, ¹*J*_{RhP} = 122).

Figure S27. ¹H NMR spectrum of the reaction between 2a and carbon monoxide (DFB, 400 MHz).

5.6. Preparation of 4a from 1a

A solution of *trans*-PNP-14 (8.3 mg, 17.4 μ mol) and [Rh(COD)₂][BAr^F₄] (20.6 mg, 17.4 μ mol) in DFB (0.5 mL) within a J. Young valve NMR tube was mixed for 5 min at RT and then freeze-pump-thaw degassed and placed under an atmosphere of carbon monoxide (1 atm). Analysis by ¹H and ³¹P NMR spectroscopy indicated quantitative formation of **4a** within 5 mins, by comparison to literature values for this complex.²

³¹P{¹H} NMR (121 MHz, DFB): δ 67.0 (d, ¹J_{RhP} = 122).

6. Synthesis, isolation and reactions of [Rh(*cis*-PNP-14)(CCH*t*Bu)][BAr^F₄] (2b)

6.1. Reaction of 1b with HC≡C*t*Bu

A solution of *cis*-PNP-14 (4.8 mg, 10.0 μ mol) and [Rh(COD)₂][BAr^F₄] (11.9 mg, 10.1 μ mol) in DFB (0.5 mL) within a J. Young valve NMR tube was mixed for 5 min at RT and HC≡C*t*Bu (3.0 μ L, 24.4 μ mol) added. Analysis by ¹H and ³¹P NMR spectroscopy after 42 h indicated quantitative formation of **2b**.

Figure S30. ¹H NMR spectrum of the reaction between 1b and HC≡CtBu (DFB, 400 MHz).

6.2. Isolation and characterisation of 2b

A solution of *cis*-PNP-14 (4.5 mg, 9.42 µmol) and [Rh(COD)₂][BAr^F₄] (11.1 mg, 9.38 µmol) in DFB (0.5 mL) was mixed for 5 min at RT and HC≡C*t*Bu (5.7 µL, 46.2 µmol) added. The resulting solution was heated at 80 °C for 30 min affording a deep blue solution. Volatiles were removed in vacuo and the resulting blue oil was washed with SiMe₄ (1 mL). Recrystallisation by slow diffusion of SiMe₄ into an Et₂O solution at 4 °C afforded the product was a dark purple crystalline solid. Yield: 12.9 mg (8.45 µmol, 90%).

¹**H NMR** (500 MHz, CD₂Cl₂): δ 7.70–7.77 (m, 9H, py + Ar^F), 7.56 (br, 4H, Ar^F), 7.40 (d, ³J_{HH} = 7.8, 2H, py), 3.77 (dvt, ²J_{HH} = 18.1, J_{PH} = 4.0, 2H, pyC<u>H</u>₂), 3.67 (dvt, ²J_{HH} = 18.1, J_{PH} = 4.2, 2H, pyC<u>H</u>₂), 2.18 (s, 1H, CC<u>H</u>*t*Bu), 1.73–2.07 (m, 6H, CH₂), 1.03–1.57 (m, 22H, CH₂), 1.27 (vt, J_{PH} = 8, 18H, P*t*Bu), 1.13 (s, 9H, CCH*<u>t</u>Bu).*

¹**H NMR** (500 MHz, DFB, selected data): δ 7.45 (t, ³*J*_{HH} = 7.8, 1H, py), 7.19 (d, ³*J*_{HH} = 7.8, 2H, py), 3.60 (dvt, ²*J*_{HH} = 18.1, *J*_{PH} = 4.1, 2H, pyC<u>H</u>₂), 3.48 (dvt, ²*J*_{HH} = 18.1, *J*_{PH} = 4.2, 2H, pyC<u>H</u>₂), 2.03 (s, 1H, CC<u>H</u>*t*Bu), 1.13 (vt, *J*_{PH} = 8, P*t*Bu), 1.05 (s, CCH<u>*t*Bu</u>).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 328.9 (dt, ¹J_{RhC} = 53, ²J_{PC} = 15, <u>C</u>CH*t*Bu), 164.4 (vtd, J_{PC} = 5, ²J_{RhC} = 1, py), 162.3 (q, ¹J_{CB} = 50, Ar^F), 141.3 (s, py), 135.4 (s, Ar^F), 129.4 (qq, ²J_{FC} = 32, ³J_{CB} = 3, Ar^F), 125.1 (q, ¹J_{FC} = 272, Ar^F), 122.1 (vt, J_{PC} = 5, py), 121.0 (dt, ²J_{RhC} = 15, ³J_{PC} = 4, C<u>C</u>H*t*Bu), 118.0 (sept, ³J_{FC} = 4, Ar^F), 38.3 (vt, J_{PC} = 9, py<u>C</u>H₂), 33.0 (vtd, J_{PC} = 13, ²J_{RhC} = 2, P*t*Bu{C}), 32.7 (s, CCH<u>*t*Bu</u>{CH₃}), 31.4 (vt, J_{PC} = 8, CH₂), 30.0 (s, CCH<u>*t*Bu</u>{C}), 28.9 (s, CH₂), 27.9 (s, CH₂), 27.7 (s, CH₂), 27.4 (vt, J_{PC} = 3, P*t*Bu{CH₃}), 26.9 (s, CH₂), 26.7 (s, CH₂), 22.8 (vtd, J_{PC} = 11, ²J_{RhC} = 3, PCH₂). ³¹P{¹H} NMR (121 MHz, CD₂Cl₂): δ 50.7 (d, ¹J_{RhP} = 139).

³¹P{¹H} NMR (162 MHz, DFB): δ 50.1 (d, ¹J_{RhP} = 139).

HR ESI-MS (positive ion 4 kV): 662.3487 ([*M*]⁺, calcd 662.3485) *m*/z.

Figure S37. HR ESI-MS of 2b.

6.3. Reaction of 2b with excess HC≡CtBu

To a solution of **2b** (10.1 μ mol) in DFB (0.5 mL) with excess HC=C*t*Bu (1.5 equiv.) prepared as described above within a J. Young valve NMR tube was heated at 80 °C for 16 h. Analysis by ¹H and ³¹P NMR spectroscopy indicated no reaction had occurred.

heating at 80 °C for 16 h (DFB, 162 MHz).

6.4. Reaction of 2b with excess DC≡CtBu

To a solution of isolated **2b** (15.2 mg, 9.96 μ mol) in DFB (355 μ L) within a J. Young valve NMR tube was added DC=C*t*Bu (12.3 μ L, 98.7 μ mol). The resulting solution heated was at 80 °C for 16 h. Volatiles were removed *in vacuo* and the residue analysed by ¹H NMR spectroscopy in CD₂Cl₂, which indicated 54% D incorporation into the vinylidene. Analysis by HR ESI-MS was uninformative.

¹**H NMR** (500 MHz, CD₂Cl₂, d_1 = 5 s, selected data): δ 2.18 (s, 0.46H, CC<u>H</u>*t*Bu).

6.5. Reaction of 2b with CO

A solution of isolated **2b** (13.9 mg, 9.11 μ mol) in DFB (0.50 mL) within a J. Young valve NMR tube was freeze-pump-thaw degassed and placed under an atmosphere of carbon monoxide (1 atm). Analysis by ¹H and ³¹P NMR spectroscopy indicated quantitative formation of **4b** and liberation of free alkyne within 1 h, by comparison to sample of **4b** independently prepared as described below from **1b**.

³¹P{¹H} NMR (162 MHz, DFB): δ 60.8 (d, ¹J_{RhP} = 122).

Figure S40. ¹H NMR spectrum of the reaction between 2b and carbon monoxide (DFB, 400 MHz).

7. Preparation of [Rh(*trans*-PNP-14)(*E*-*t*BuC≡CCHCH*t*Bu)][BAr^F₄] (3a)

A solution of **2a** (17.4 µmol) in DFB (0.5 mL) with excess HC≡C*t*Bu (4 equiv.) prepared as described above within a J. Young valve NMR tube was heated at 80 °C for 16 h forming a yellow solution. Volatiles were removed *in vacuo* and the resulting orange oil washed with SiMe₄ (0.5 mL). Recrystallisation by slow diffusion of SiMe₄ into an Et₂O solution at -30 °C afforded the product was obtained as a yellow crystalline solid. Yield: 24.3 mg (15.1 µmol, 87%).

¹**H NMR** (500 MHz, CD₂Cl₂): δ 7.78 (t, ³J_{HH} = 7.8, 1H, py), 7.70–7.74 (m, 8H, Ar^F), 7.56 (br, 4H, Ar^F), 7.41 (d, ³J_{HH} = 15.6, 1H, CH=C<u>H</u>*t*Bu), 7.36 (d, ³J_{HH} = 7.8, 1H, py), 7.35 (d, ³J_{HH} = 7.8, 1H, py), 5.98 (d, ³J_{HH} = 15.6, 1H, C<u>H</u>=CH*t*Bu), 3.36 (dd, ²J_{HH} = 15.9, ²J_{PH} = 4.1, 1H, pyC<u>H</u>₂), 3.54 (dd, ²J_{HH} = 15.5, ²J_{PH} = 9.2, 1H, pyC<u>H</u>₂), 3.48 (dd, ²J_{HH} = 15.5, ²J_{PH} = 5.7, 1H, pyC<u>H</u>₂), 3.43 (dd, ²J_{HH} = 15.9, ²J_{PH} = 9.9, 1H, pyC<u>H</u>₂), 2.15–2.28 (m, 1H, CH₂), 1.95–2.09 (m, 1H, PCH₂), 1.80–1.92 (m, 1H, PCH₂), 1.70 (s, 9H, C≡C*t*Bu), 1.05–1.77 (m, 25H, CH₂), 1.21 (s, 9H, CH=CH<u>*t*Bu</u>), 0.97 (d, ³J_{PH} = 12.7, 9H, P*t*Bu), 0.84 (d, ³J_{PH} = 12.7, 9H, P*t*Bu).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 163.3 (d, ²*J*_{PC} = 5, py), 162.6 (d, ²*J*_{PC} = 4, py), 162.3 (q, ¹*J*_{CB} = 50, Ar^F), 155.9 (s, CH=<u>C</u>H*t*Bu), 141.3 (s, py), 135.4 (s, Ar^F), 129.4 (qq, ²*J*_{FC} = 32, ³*J*_{CB} = 3, Ar^F), 125.2 (q, ¹*J*_{FC} = 272, Ar^F), 121.7 (d, ³*J*_{PC} = 7, py), 121.3 (d, ³*J*_{PC} = 7, py), 118.0 (sept, ³*J*_{FC} = 4, Ar^F), 114.3 (s, <u>C</u>H=CH*t*Bu), 84.3 (d, ¹*J*_{RhC} = 12, C=<u>C</u>*t*Bu), 64.8 (d, ¹*J*_{RhC} = 11, <u>C</u>=C*t*Bu), 40.7 (dd, ¹*J*_{PC} = 17, ³*J*_{PC} = 2, py<u>C</u>H₂), 39.4 (dd, ¹*J*_{PC} = 17, ³*J*_{PC} = 2, py<u>C</u>H₂), 35.3 (s, CH=CH*t*<u>Bu</u>{C}), 34.1 (s, C=C*t*<u>Bu</u>{C}), 33.8 (vt, *J*_{PC} = 8, *Pt*Bu{C}), 33.6 (br d, ¹*J*_{PC} = 13, *Pt*Bu{C}), 32.6 (s, C=C*t*<u>Bu</u>{CH₃}), 31.6 (d, *J*_{PC} = 10, CH₂), 31.0 (s, CH₂), 30.9 (s, CH₂), 30.8 (d, *J*_{PC} = 6, CH₂), 30.52 (s, CH₂), 30.49 (s, CH₂), 30.4 (s, CH=CH*t*<u>Bu</u>{CH₃}), 30.3 (s, CH₂), 29.8 (s, CH₂), 29.5 (s, CH₂), 29.1 (s, CH₂), 29.0 (d, ²*J*_{PC} = 5, *Pt*Bu{CH₃}), 28.7 (d, ²*J*_{PC} = 5, *Pt*Bu{CH₃}), 27.1–27.4 (m, PCH₂), 26.5 (d, *J*_{PC} = 4, CH₂), 25.9 (d, *J*_{PC} = 2, CH₂), 25.6–25.8 (m, PCH₂).

³¹**P**{¹**H**} **NMR** (162 MHz, CD₂Cl₂): δ 57.6 (dd, ²*J*_{PP} = 392, ¹*J*_{RhP} = 133, 1P), 51.9 (dd, ²*J*_{PP} = 392, ¹*J*_{RhP} = 129, 1P).

HR ESI-MS (positive ion 4 kV): 744.4263, ([*M*]⁺, calcd 744.4268) *m*/*z*.

Anal. Calcd for C₇₃H₈₅BF₂₄NP₂Rh (1608.11 gmol⁻¹): C, 54.52; H, 5.33; N, 0.87. Found: C, 54.38; H, 5.41; N, 0.88.

Figure S45. HR ESI-MS of 3a.

8. Reaction of {Rh(*trans*-PNP-14)}⁺ (1a) with *E*-*t*BuC≡CCHCH*t*Bu

A solution of *trans*-PNP-14 (5.8 mg, 12.1 µmol) and $[Rh(COD)_2][BAr^F_4]$ (14.3 mg, 12.1 µmol) in DFB (0.5 mL) within a J. Young valve NMR tube was mixed for 5 min at RT and *E-t*BuC≡CCHCH*t*Bu (12.5 mg, 76.1 µmol) added. The resulting solution was stirred for 1 h at RT and volatiles removed *in vacuo*. The resulting orange oil was washed with SiMe₄ (3×0.5 mL) and dried to afford the non-interpenetrated enyne isomer of **3a** [Rh(*trans*-PNP-14)(exo-*E-t*BuC≡CCHCH*t*Bu)][BAr^F₄] (**3a'**) as the exclusive organometallic product as an orange foam, which was characterised *in situ* and carried forward without further purification.

¹**H NMR** (500 MHz, DFB, selected data): δ 7.48 (t, ³*J*_{HH} = 7.8, 1H, py), 7.14–7.18 (m, 2H, py), 6.07 (d, ³*J*_{HH} = 15.8, 1H, CH=C<u>H</u>*t*Bu), 5.71 (d, ³*J*_{HH} = 15.8, 1H, C<u>H</u>=CH*t*Bu), 3.47 (dd, ²*J*_{HH} = 17.4, ²*J*_{PH} = 5.4, 1H, pyC<u>H</u>₂), 3.39 (ddd, ²*J*_{HH} = 17.4, ²*J*_{PH} = 10.7, ⁴*J*_{PH} = 3.4, 1H, pyC<u>H</u>₂), 3.26 (br dd, ²*J*_{HH} = 17.8,

 ${}^{2}J_{PH}$ = 10.4, 1H, pyC<u>H</u>₂), 3.12 (dd, ${}^{2}J_{HH}$ = 17.8, ${}^{2}J_{PH}$ = 8.4, 1H, pyC<u>H</u>₂), 1.34 (s, 9H, C≡C<u>*t*Bu</u>), 1.04 (s, 9H, CH=CH<u>*t*Bu</u>), 0.88 (d, ${}^{3}J_{PH}$ = 12.8, 9H, P*t*Bu), 0.87 (d, ${}^{3}J_{PH}$ = 13.9, 9H, P*t*Bu).

¹³C{¹H} NMR (126 MHz, DFB, selected data): δ 164.2 (dd, ²*J*_{PC} = 8, *J*_{PC} = 3, py), 161.4 (d, ²*J*_{PC} = 6, py), 153.5 (s, CH=<u>C</u>H*t*Bu), 139.0 (s, py), 121.1 (d, ³*J*_{PC} = 9, py), 120.6 (d, ³*J*_{PC} = 9, py), 110.4 (s, <u>C</u>H=CH*t*Bu), 88.0 (d, ¹*J*_{RhC} = 18, C=<u>C</u>*t*Bu), 67.8 (dd, ¹*J*_{RhC} = 9, ²*J*_{PC} = 4, <u>C</u>=C*t*Bu), 38.8 (br d, ¹*J*_{PC} = 18, py<u>C</u>H₂), 36.5 (br d, ¹*J*_{PC} = 16, py<u>C</u>H₂), 31.0 (s, C=C<u>*t*Bu</u>{CH₃}), 28.9 (s, CH=CH<u>*t*Bu</u>{CH₃}), 28.5 (d, ²*J*_{PC} = 4, *Pt*Bu{CH₃}), 25.1 (d, ²*J*_{PC} = 5, *Pt*Bu{CH₃}).

³¹P{¹H} NMR (162 MHz, DFB): δ 44.3 (dd, ²*J*_{PP} = 408, ¹*J*_{RhP} = 131, 1P), 36.9 (dd, ²*J*_{PP} = 408, ¹*J*_{RhP} = 128, 1P).

HR ESI-MS (positive ion 4 kV): 774.4383 ([*M*]⁺, calcd 744.4286) *m*/z.

A solution of **3a'** (12.1 µmol) in DFB (0.5 mL) within a J. Young valve NMR tube was heated at 80 °C for 5 days. Analysis by ¹H and ³¹P NMR spectroscopy indicated complete consumption of **3a'**, formation of a derivative where the ring has been dehydrogenated, [Rh(*trans*-PNP-14')][BAr^F₄] (**5a**), as the major organometallic product (>80%) alongside *E*,*E*-*t*BuCH=CHCH=CH*t*Bu (δ 5.87 (2H), 5.50 (2H), 0.92 (18H))⁶ from transfer hydrogenation of *E*-*t*BuC=CCHCH*t*Bu. Volatiles were removed *in vacuo* and the residue extracted with hot heptane to afford the product, which was characterised *in situ*. Based on this data we cannot discriminate between formulations featuring an internal *E*- or *Z*- alkene, and it is possible the balance of the material is the alternative isomer. Indeed, a handful of single crystals were obtained by recrystallisation from heptane and analysis by X-ray diffraction indicated a mixture of *E*- and *Z*-alkene isomers. We do not think this is representative of the bulk, but nevertheless this solution further corroborates dehydrogenation of the methylene chain.

¹**H NMR** (500 MHz, CD₂Cl₂, selected data): δ 7.73 (obscured, 1H, py), 7.36 (d, ${}^{3}J_{HH}$ = 7.8, 1H, py), 7.29 (d, ${}^{3}J_{HH}$ = 7.8, 1H, py), 5.13–5.21 (m, 1H, CH=CH), 4.31–4.40 (m, 1H, CH=CH), 3.60–3.75 (m, 3H, 3×pyCH₂), 3.34–3.43 (m, 1H, pyCH₂), 1.04 (d, ${}^{3}J_{PH}$ = 14.6, 9H, *t*Bu), 0.84 (d, ${}^{3}J_{PH}$ = 13.9, 9H, *t*Bu).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, selected data): δ 130.8 (s, py), 121.7 (overlapping d, ³*J*_{PC} = 9, 2×py), 88.3 (dd, ¹*J*_{RhC} = 11, ²*J*_{PC} = 4, CH=CH) 70.3 (d, ¹*J*_{RhC} = 8, CH=CH), 39.5 (d, ¹*J*_{PC} = 18, py<u>C</u>H₂), 36.8 (br d, ¹*J*_{PC} = 15, py<u>C</u>H₂), 26.9 (d, ²*J*_{PC} = 4, PtBu{CH₃}), 26.7 (d, ²*J*_{PC} = 5, PtBu{CH₃}).

³¹**P**{¹**H**} **NMR** (162 MHz, CD₂Cl₂): δ 89.7 (dd, ²*J*_{PP} = 301, ¹*J*_{RhP} = 128, 1P), 53.0 (dd, ²*J*_{PP} = 301, ¹*J*_{RhP} = 124, 1P).

³¹**P**{¹**H**} **NMR** (162 MHz, DFB): δ 90.0 (dd, ²*J*_{PP} = 300, ¹*J*_{RhP} = 128, 1P), 52.4 (dd, ²*J*_{PP} = 300, ¹*J*_{RhP} = 124, 1P).

HR ESI-MS (positive ion 4 kV): 578.2534 ([M]⁺, calcd 578.2546) m/z.

Figure S50. ¹H NMR spectrum collected after heating **3a'** at 80 °C for 5 days (DFB, 400 MHz).

Figure S56. Solid-state structure of 5a (both disordered components): thermal ellipsoids drawn at 30% probability, anion, solvent and most hydrogen atoms omitted. Selected bond lengths (Å) and angles (deg): Rh1-P2, 2.2349(15); Rh1-P3, 2.3153(14); Rh1-N101, 2.085(5); P2-Rh1-P3, 164.51(7); Rh1-Cnt(C119,C120), 2.038(5), Rh1-Cnt(C119,C220), 2.152(12); C119-C120 [restrained with C119-C220], 1.320(11); C119-C220, 1.336(14) [restrained with C119-C120]; N101-Rh1-Cnt(C119,C120), 167.4(2); N101-Rh1-Cnt(C119,C220), 166.4(3); Cnt = centroid.

9. Preparation of [Rh(*cis*-PNP-14)(CO)][BAr^F₄] (4b)

A solution of *cis*-PNP-14 (8.3 mg, 17.4 μ mol) and [Rh(COD)₂][BAr^F₄] (20.6 mg, 17.4 μ mol) in DFB (0.5 mL) was mixed for 5 min at RT and then freeze-pump-thaw degassed and placed under an atmosphere of carbon monoxide for 5 min. Volitates were removed to afford the product as a yellow solid after washing with SiMe₄ (2×0.5 mL). Yield: 20.2 mg (13.7 μ mol, 79%).

¹**H NMR** (500 MHz, CD₂Cl₂): *δ* 7.78 (t, ³*J*_{HH} = 7.8, 1H, py), 7.70–7.74 (m, 8H, Ar^F), 7.56 (br, 4H, Ar^F), 7.43 (d, ³*J*_{HH} = 7.8, 2H, py), 3.75 (dvt, ²*J*_{HH} = 18.1, *J*_{PH} = 4.2, 2H, pyC<u>H</u>₂), 3.61 (dvt, ²*J*_{HH} = 18.1, *J*_{PH} = 4.4, 2H, pyC<u>H</u>₂), 1.96–2.07 (m, 2H, PCH₂), 1.83–1.95 (m, 2H, PCH₂), 1.66–1.77 (m, 2H, CH₂), 1.38–1.53 (m, 6H, CH₂), 1.22–1.38 (m, 16H, CH₂), 1.26 (vt, *J*_{PH} = 8, 18H, *t*Bu).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂): δ 193.6 (dt, ¹J_{RhC} = 69, ²J_{PC} = 14, CO), 164.5 (vtd, J_{PC} = 6, ²J_{RhC} = 1, py), 162.3 (q, ¹J_{CB} = 50, Ar^F), 141.1 (s, py), 135.4 (s, Ar^F), 129.4 (qq, ²J_{FC} = 32, ³J_{CB} = 3, Ar^F), 125.1 (q, ¹J_{FC} = 272, Ar^F), 122.5 (vt, J_{PC} = 6, py), 118.0 (sept, ³J_{FC} = 4, Ar^F), 38.2 (vt, J_{PC} = 9, py<u>C</u>H₂), 32.6 (vtd, J_{PC} = 14, ²J_{RhC} = 2, *t*Bu{C}), 31.2 (vt, J_{PC} = 7, CH₂), 28.5 (s, CH₂), 27.6 (s, CH₂), 27.4 (s, CH₂) 27.1 (vt, J_{PC} = 3, *t*Bu{CH₃}), 27.0 (s, CH₂), 26.7 (s, CH₂), 23.9 (vtd, J_{PC} = 12, ²J_{RhC} = 2, PCH₂).

³¹**P**{¹**H**} **NMR** (162 MHz, CD₂Cl₂): δ 60.8 (d, ¹*J*_{RhP} = 122).

IR (CH₂Cl₂): *v*(CO) 1997 cm⁻¹.

HR ESI-MS (positive ion, 4 kV): 608.2649, ([*M*]⁺, calcd 608.2652) *m*/z.

Figure S60. IR spectrum of 4b recorded in CH₂Cl₂.

10. Preparation of [Rh(*trans*-PONOP-14)(*E*-*t*BuC≡CCHCH*t*Bu)][BAr^F₄]

To a solution of [Rh(*trans*-PONOP-14)(C₂H₄)][BAr^F₄] (10 µmol, generated *in situ*) in DFB (0.5 mL) was added HC=C*t*Bu (6.0 µL, 48.7 µmol) at RT. The resulting solution was heated at 80 °C for 3 days. Volatiles were removed *in vacuo* and the resulting yellow oil washed with SiMe₄ (0.5 mL). Recrystallisation by slow diffusion of SiMe₄ into an Et₂O solution at -30 °C afforded the product was obtained as a yellow crystalline solid. Yield: 6.4 mg (3.97 µmol, 40%).

¹**H NMR** (700 MHz, CD₂Cl₂): δ 7.89 (t, ³J_{HH} = 8.1, 1H, py), 7.70–7.74 (m, 8H, Ar^F), 7.56 (br, 4H, Ar^F), 7.31 (d, ³J_{HH} = 15.8, 1H, CH=C<u>H</u>*t*Bu), 6.80 (d, ³J_{HH} = 8.1, 1H, py), 6.79 (d, ³J_{HH} = 8.1, 1H, py), 6.01 (d, ³J_{HH} = 15.8, 1H, C<u>H</u>=CH*t*Bu), 2.60–2.73 (m, 2H, CH₂), 2.41–2.50 (m, 1H, CH₂), 2.13–2.20 (m, 1H, CH₂), 1.75–1.95 (m, 2H, CH₂), 1.68 (s, 9H C≡C*t*Bu), 0.96–1.66 (m, 22H, CH₂), 1.19 (s, 9H, CH=CH*t*Bu), 1.18 (d, ³J_{PH} = 13.8, P*t*Bu), 1.07 (d, ³J_{PH} = 14.0, 9H, P*t*Bu).

¹³C{¹H} NMR (176 MHz, CD₂Cl₂): δ 163.5 (d, ²J_{PC} = 3, py), 163.0 (d, ²J_{PC} = 3, py), 162.3 (q, ¹J_{CB} = 50, Ar^F), 157.7 (s, CH=<u>C</u>HtBu), 146.9 (s, py), 135.3 (s, Ar^F), 129.4 (qq, ²J_{FC} = 32, ³J_{CB} = 3, Ar^F), 125.1 (q, ¹J_{FC} = 272, Ar^F), 118.0 (sept, ³J_{FC} = 4, Ar^F), 115.3 (s, <u>C</u>H=CHtBu), 104.7 (d, ³J_{PC} = 4, py), 104.6 (d, ³J_{PC} = 4, py), 85.7 (d, ¹J_{RhC} = 11, C=<u>C</u>tBu), 68.1 (d, ¹J_{RhC} = 12, <u>C</u>=CtBu), 42.6 (d, ¹J_{PC} = 9, PtBu{C}), 41.5 (vt, J_{PC} = 7, PtBu{C}), 35.7 (s, CH=CHtBu{C}), 33.9 (s, C=CtBu{C}), 32.3 (s, C=CtBu{CH₃}), 31.9 (d, ²J_{PC} = 3, CH₂), 31.3 (d, ²J_{PC} = 5, CH₂), 30.9 (br, 3×CH₂), 30.7 (s, CH₂), 30.4 (s, CH₂), 30.23 (s, CH₂), 30.22 (s, CH₂), 29.8 (s, CH=CHtBu{CH₃}), 29.63 (s, CH₂), 29.55 (s, CH₂), 29.2 (s, CH₂), 27.7 (d, ²J_{PC} = 6, PtBu{CH₃}), 26.5 (d, ²J_{PC} = 6, PtBu{CH₃}), 24.7 (s, PCH₂), 24.2 (d, ¹J_{PC} = 6, PCH₂).

³¹**P**{¹**H**} **NMR** (162 MHz, CD₂Cl₂): δ 204.5 (dd, ²*J*_{PP} = 395, ¹*J*_{RhP} = 140, 1P), 194.5 (dd, ²*J*_{PP} = 395, ¹*J*_{RhP} = 133, 1P).

HR ESI-MS (positive ion 4 kV): 748.3861 ([*M*]⁺, calcd 748.3853) *m*/z.

MHz).

(CD₂Cl₂, 176 MHz).

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 **Figure S64**. ${}^{31}P{}^{1}H$ NMR spectrum of [Rh(*trans*-PONOP-14)(*E*-*t*BuC≡CCHCH*t*Bu)][BAr^F₄] (CD₂Cl₂, 162 MHz).

Figure S65. HR ESI-MS of [Rh(*trans*-PONOP-14)(*E*-*t*BuC≡CCHCH*t*Bu)][BAr^F₄].

Figure S66. Solid-state structure of [Rh(*trans*-PONOP-14)(*E*-*t*BuC≡CCHCH*t*Bu)][BAr^F₄]: thermal ellipsoids drawn at 50% probability, anion and most hydrogen atoms omitted. Selected bond lengths (Å) and angles (deg): Rh1-P2, 2.3118(10); Rh1-P3, 2.3159(9); Rh1-N101, 2.040(3); P2-Rh1-P3, 158.46(4); Rh1-Cnt(C2,C3), 2.061(2); C2-C3, 1.243(5); C2-C4, 1.447(5); C4-C5, 1.324(5); N101-Rh1-Cnt(C2,C3), 172.22(12); C2-C4-C5, 123.8(4); py-Rh-C≡C twist, 77.1(3) Cnt = centroid.

11. References

- ¹ M. R. Gyton, T. M. Hood and A. B. Chaplin, *Dalton Trans.*, 2019, **48**, 2877–2880.
- ² T. M. Hood, M. R. Gyton and A. B. Chaplin, *Dalton Trans.*, 2020, **49**, 2077–2086.
- ³ E. Neumann and A. Pfaltz, *Organometallics*, 2005, **24**, 2008–2011.
- ⁴ A. Bismuto, S. P. Thomas and M. J. Cowley, *Angew. Chem. Int. Ed.*, 2016, **55**, 15356–15359.
- ⁵ C. Yang and S. P. Nolan, *J. Org. Chem.*, 2002, **67**, 591–593.
- ⁶ E. Negishi, T. Takahashi and K. Akiyoshi, J. Organomet. Chem., 1987, 334, 181–194