Supporting Information

Ratiometric detection of the biomarker Ap5A for dry eye and

physiological temperature by a rare trinuclear lanthanide metal-

organic framework

Tifeng Xia,^a Yating Wan,^b Xiayan Yan,^a Li Hu,^a Zhigang Wu^a and Jun Zhang^a

^aInstitute of Materials, China Academy of Engineering Physics, Mianyang 621907, P. R. China

^bShanghai Institute of Laser Plasma, China Academy of Engineering Physics, Shanghai 201800, China

Corresponding authors: xiatifeng@caep.cn, j-zhang@caep.cn.

Figure S1. The crystal structure of Eu(2,6-NDC) view along *a*, *b* axis, and the rugby shaped cavity.

Figure S2. The TGA curve of Eu(2,6-NDC).

Figure S3. The PXRD pattern of Eu(2,6-NDC) after different temperature treatment.

Figure S4. Excitation and emission spectra of free 2,6-H₂NDC.

Figure S5. Excited spectrum of Eu(2,6-NDC) in solid state monitored at 612 nm.

Figure S6. Emission spectrum of Eu(2,6-NDC) in solid state excited at 363 nm.

Figure S7. Emission spectrum of Eu(2,6-NDC) in water excited at 350 nm.

Figure S8. Excited spectrum of Eu(2,6-NDC) in water monitored at 616 nm.

Figure S9. (a) Emission spectra of Eu(2,6-NDC) suspension upon gradual addition of Ap4A from 0 to 0.6 mM. (b) Luminescence intensity ratio (*I*₃₈₆/*I*₆₁₆) of Eu(2,6-NDC) suspension versus the concentration of Ap4A. Inset: The linear calibration plot for Ap4A detection.

Figure S10. PXRD patterns of Eu_{0.001}Gd_{0.999}(2,6-NDC) and simulated Eu(2,6-NDC).

Figure S11. Emission spectrum of Eu_{0.001}Gd_{0.999}(2,6-NDC) in solid state at 20 °C excited at 340 nm.

	Eu(2,6-NDC)
Chemical formla	$C_{39}H_4Eu_{22}O_{19}$
Formula weight	1250.54
Temperature (K)	293(2)
Wavelength (Å)	0.71073
Crystal system	Hexagonal
Space group	$P 6_3/m$
<i>a</i> (Å)	10.5738(4)
<i>b</i> (Å)	10.5738(4)
<i>c</i> (Å)	24.7974(10)
α (°)	90
β (°)	90
γ (°)	120
$V(Å^3)$	2401.0(2)
Z	2
Density (calculated $g \cdot cm^{-3}$)	1.776
Absorbance coefficient (mm ⁻¹)	3.944
F(000)	1231
Crystal size (mm ³)	0.4X0.4X0.2
R(int)	0.0309
Goodness of fit on F_2	1.175
$R_1, wR_2 [I > 2\sigma(I)]^a$	0.0405, 0.1031
R_1 , wR_2 (all data) ^a	0.0428, 0.1043
Largest difference peak and hole (e·Å-3)	1.285, -1.621

 Table S1. Crystallographic Data Collection and Refinement Results of Eu(2,6-NDC).

$${}_{a}^{R1} = \sum (|F_{o}| - |F_{c}|) / \sum |F_{o}|; wR2 = \left[\frac{\sum w(|F_{o}| - |F_{c}|^{2})}{\sum wF_{o}^{2}}\right]^{1/2}$$