Electronic Supporting Information

Forays into Rhodium Macrocyclic Chemistry Stabilized by a P_2N_2 Donor Set. Activation of Dihydrogen and Benzene

Alyssa Yeo, Corey A. Sanz, and Michael D. Fryzuk*

Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1

CANADA.

Figure S1 ${}^{31}P{}^{1}H$ NMR (161.9 Hz) spectrum (inset) and ${}^{1}H{}^{31}P$ NMR (400 MHz) spectrum of $[P_2N_2][Rh(COD)]_2(1)$ (in C₆D₆). S2 Figure S2 Comparison of the ${}^{31}P{}^{1}H$ NMR spectra (161.9 MHz, C_6D_6) of the material isolated after the treatment of $[P_2N_2][Rh(COD)]_2(1)$ with H₂ gas, before heating (top) and after heating at 80 °C for 12 h (bottom). S2 Figure S3 ${}^{1}H{}^{31}P{}$ NMR spectrum (400 MHz, C₆D₆) of the material isolated after the treatment of $[P_2N_2][Rh(COD)]_2(1)$ with H₂ gas, after heating at 80 °C for 12 h. S3 Figure S4 ³¹P{¹H} NMR (161.9 MHz) spectrum (inset) and ¹H{³¹P} NMR (400 MHz) spectrum of $([Rh(COE)][P_2N_2]Li)_2(dioxane)$ (2) (in C₆D₆). **S**3 Figure S5 ${}^{31}P{}^{1}H{}$ NMR (161.9 MHz) spectrum (inset) and ${}^{1}H$ NMR (400 MHz) spectrum of Rh[P₂N₂H](H)₂ (3) $(in C_6 D_6)$. (Resonances denoted with (*) indicate residual solvent impurities of hexanes and HMDSO). S4 Figure S6 13 C APT NMR spectrum (100.6 MHz, C₆D₆) of Rh[P₂N₂H](H)₂ (3) (with methine and methyl carbons in a positive phase and negatively phased quaternary carbons and methylene carbons). (Resonance denoted with (*) corresponds to residual HMDSO). **S**4 Figure S7 ¹H-¹³C HMBC NMR spectrum (400 MHz ¹H and 100.6 MHz ¹³C external projections, C₆D₆) of $Rh[P_2N_2H](H)_2$ (3) displaying a multiple-bond correlation between the N-H proton and silvl methyl carbons.S5 Figure S8 ¹H NMR (400 MHz) spectrum of $([Rh(H)_2][P_2N_2]Li)_2(dioxane)$ (4) (in C₆D₆). (Resonances denoted with (*) correspond to residual hexanes). S6 Figure S9 ${}^{31}P{}^{1}H$ NMR (161.9 MHz) spectrum of ([Rh(H)₂][P₂N₂]Li)₂(dioxane) (4) (in C₆D₆). S6 Figure S10 ${}^{13}C{}^{1}H{}$ NMR (100.6 MHz) spectrum of ([Rh(H)₂][P₂N₂]Li)₂(dioxane) (4) (in C₆D₆). (Resonances denoted with (*) correspond to residual hexanes). **S7** Figure S11 ¹H NMR (400 MHz) spectrum of $([Rh(C_6H_5)H][P_2N_2]Li)_2$ (dioxane) (5) (in C₆D₆). (Resonances denoted with (*) correspond to residual hexanes). **S**7 Figure S12 ${}^{31}P{}^{1}H{}$ NMR (161.9 MHz) spectrum of ([Rh(C₆H₅)H][P₂N₂]Li)₂(dioxane) (5) (in C₆D₆). **S**8 Figure S13 ${}^{13}C{}^{1}H{}$ NMR (100.6 MHz) spectrum of ([Rh(C₆H₅)H][P₂N₂]Li)₂(dioxane) (5) (in C₆D₆). (Resonances denoted with (*) correspond to residual hexanes). **S**8 Figure S13 ${}^{13}C{}^{1}H{}$ NMR (100.6 MHz) spectrum of ([Rh(C₆H₅)H][P₂N₂]Li)₂(dioxane) (5) (in C₆D₆). (Resonances denoted with (*) correspond to residual hexanes). **S**8 Figure S14 ¹H NMR (400 MHz) spectrum of Rh[P₂N₂H](COE) (6) (in C_6D_6). **S**9 Figure S15 ${}^{31}P{}^{1}H{}$ NMR (161.9 MHz) spectrum of Rh[P₂N₂H](COE) (6) (in C₆D₆) at 298K. S9 Figure S16 ${}^{31}P{}^{1}H{}$ NMR (161.9 MHz) spectrum of Rh[P₂N₂H](COE) (6) (in toluene-d₈) at 188K. S10 Figure S17 ¹³C{¹H} NMR (100.6 MHz) spectrum of Rh[P₂N₂H](COE) (6) (in C₆D₆). S10 Figure S18 DEPT-135 / $^{13}C{^{1}H}$ NMR (100.6 MHz) spectrum of Rh[P₂N₂H](COE) (6) (in C₆D₆). +/-/x refers to up/down/missing in DEPT-135 spectrum. S11 Figure S19 ¹H NMR (400 MHz) spectrum of the reaction between $Rh[P_2N_2H](COE)$ (6) and H_2 (in C₆D₆). (Resonance denoted with (*) corresponds to cyclooctane formed in the reaction). S11 Figure S20 ³¹P{¹H} NMR (161.9 MHz) spectrum of the reaction of Rh[P₂N₂H](COE) (6) with H₂(C₆D₆). S12 Figure S21 ¹H NMR (400 MHz) spectrum of the in-situ sample taken from the reaction of $([Rh(COE)][P_2N_2]Li)_2(dioxane)$ (2) with H₂ after 4 days (1:1 C₆H₆:C₆D₆; the aromatic region of spectrum was distorted due to the very large C_6H_6 signal and so it is not shown). (Resonance denoted with (*) corresponds to cyclooctane formed in the reaction). S12 **Figure S22** ³¹P 1 H 1 NMR (161.9 MHz) spectrum of the in-situ sample taken from the reaction of $([Rh(COE)][P_2N_2]Li)_2(dioxane)$ (2) with H₂ after 4 days (1:1 C₆H₆:C₆D₆). S13 X-ray Crystallographic Analyses, CDCC's and Tables S1-S4 for [P₂N₂][Rh(COD)]₂, ([Rh(COE)][P₂N₂]- $Li_{2}(dioxane), Rh[P_2N_2H](H)_2, ([Rh(C_6H_2)H][P_2N_2]Li)_2(dioxane), ([Rh(H)_2][P_2N_2]Li)_2(dioxane), and$ $Rh[P_2N_2H](COE)$ S14-S18 References S19

Selected NMR Spectra

Figure S1 ³¹P{¹H} NMR (161.9 Hz) spectrum (inset) and ¹H{³¹P} NMR (400 MHz) spectrum of $[P_2N_2][Rh(COD)]_2$ (1) (in C₆D₆).

³¹P NMR (161.9 MHz, C_6D_6) δ 33.65 (d, J = 95.9 Hz), 21.03 (d, J = 104.8 Hz), 20.60 (d, J = 114.3 Hz).

Figure S2 Comparison of the ${}^{31}P{}^{1}H$ NMR spectra (161.9 MHz, C₆D₆) of the material isolated after the treatment of $[P_2N_2][Rh(COD)]_2$ (1) with H₂ gas, before heating (top) and after heating at 80 °C for 12 h (bottom).

Figure S3 ¹H{³¹P} NMR spectrum (400 MHz, C_6D_6) of the material isolated after the treatment of $[P_2N_2][Rh(COD)]_2$ (1) with H₂ gas, after heating at 80 °C for 12 h.

Figure S4 ³¹P{¹H} NMR (161.9 MHz) spectrum (inset) and ¹H{³¹P} NMR (400 MHz) spectrum of $([Rh(COE)][P_2N_2]Li)_2(dioxane)$ (2) (in C₆D₆).

Figure S5 ${}^{31}P{}^{1}H$ NMR (161.9 MHz) spectrum (inset) and ${}^{1}H$ NMR (400 MHz) spectrum of Rh[P₂N₂H](H)₂ (**3**) (in C₆D₆). (Resonances denoted with (*) indicate residual solvent impurities of hexanes and HMDSO).

Figure S6 ¹³C APT NMR spectrum (100.6 MHz, C_6D_6) of Rh[P₂N₂H](H)₂ (**3**) (with methine and methyl carbons in a positive phase and negatively phased quaternary carbons and methylene carbons). (Resonance denoted with (*) corresponds to residual HMDSO).

Figure S7 ${}^{1}H-{}^{13}C$ HMBC NMR spectrum (400 MHz ${}^{1}H$ and 100.6 MHz ${}^{13}C$ external projections, C₆D₆) of Rh[P₂N₂H](H)₂ (**3**) displaying a multiple-bond correlation between the N–H proton and silvl methyl carbons.

Figure S8 ¹H NMR (400 MHz) spectrum of $([Rh(H)_2][P_2N_2]Li)_2(dioxane)$ (4) (in C₆D₆). (Resonances denoted with (*) correspond to residual hexanes).

Figure S9 ${}^{31}P{}^{1}H$ NMR (161.9 MHz) spectrum of ([Rh(H)₂][P₂N₂]Li)₂(dioxane) (4) (in C₆D₆).

Figure S10 ¹³C{¹H} NMR (100.6 MHz) spectrum of $([Rh(H)_2][P_2N_2]Li)_2(dioxane)$ (4) (in C₆D₆). (Resonances denoted with (*) correspond to residual hexanes).

Figure S11 ¹H NMR (400 MHz) spectrum of $([Rh(C_6H_5)H][P_2N_2]Li)_2(dioxane)$ (5) (in C_6D_6). (Resonances denoted with (*) correspond to residual hexanes).

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 (ppm)

Figure S12 ${}^{31}P{}^{1}H{}$ NMR (161.9 MHz) spectrum of [([Rh(C₆H₅)H][P₂N₂]Li)₂(dioxane) (5) (in C₆D₆).

Figure S13 ¹³C{¹H} NMR (100.6 MHz) spectrum of $([Rh(C_6H_5)H][P_2N_2]Li)_2(dioxane)$ (5) (in C_6D_6). (Resonances denoted with (*) correspond to residual hexanes).

Figure S14 1 H NMR (400 MHz) spectrum of Rh[P₂N₂H](COE) (6) (in C₆D₆).

Figure S15 ${}^{31}P{}^{1}H{}$ NMR (161.9 MHz) spectrum of Rh[P₂N₂H](COE) (6) (in C₆D₆) at 298K.

Figure S16 ${}^{31}P{}^{1}H$ NMR (161.9 MHz) spectrum of Rh[P₂N₂H](COE) (6) (in toluene-d₈) at 188K.

Figure S17 ${}^{13}C{}^{1}H$ NMR (100.6 MHz) spectrum of Rh[P₂N₂H](COE) (6) (in C₆D₆).

Figure S18 DEPT-135 / ${}^{13}C{}^{1}H$ NMR (100.6 MHz) spectrum of Rh[P₂N₂H](COE) (**6**) (in C₆D₆). +/-/x refers to up/down/missing in DEPT-135 spectrum.

Figure S19 ¹H NMR (400 MHz) spectrum of the reaction between $Rh[P_2N_2H](COE)$ (6) and H_2 (in C_6D_6). (Resonance denoted with (*) corresponds to cyclooctane formed in the reaction).

Figure S20 ³¹P{¹H} NMR (161.9 MHz) spectrum of the reaction between Rh[P₂N₂H](COE) (6) and H₂ (in C₆D₆).

Figure S21 ¹H NMR (400 MHz) spectrum of the in-situ sample taken from the reaction of $([Rh(COE)][P_2N_2]Li)_2(dioxane)$ (2) with H₂ after 4 days (1:1 C₆H₆:C₆D₆; the aromatic region of spectrum was distorted due to the very large C₆H₆ signal and so it is not shown). (Resonance denoted with (*) corresponds to cyclooctane formed in the reaction).

Figure S22 ³¹P{¹H} NMR (161.9 MHz) spectrum of the in-situ sample taken from the reaction of $([Rh(COE)][P_2N_2]Li)_2(dioxane)$ (2) with H₂ after 4 days (1:1 C₆H₆:C₆D₆).

X-ray Crystallographic Analyses

Suitable single crystals were selected, coated in Fomblin oil and mounted on a glass loop. X-ray data was collected on a Bruker DUO or X8 Apex II diffractometer with a graphitemonochromated Mo K α radiation ($\lambda = 0.71073$ Å) at a temperature of 90 or 100 K. Data was integrated using the Bruker SAINT software package.¹ The absorption corrections were performed using the multi-scan technique (SADABS).² The structures were solved by direct methods and refined using the Olex2³ software package with the SHELX refinement program.⁴ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms (unless specified) were placed in calculated positions and assigned to an isotropic displacement parameter; the hydrogen atoms bonded to the rhodium atom in [P₂N₂H]Rh(H)₂ and ([RhH(Ph)][P₂N₂]Li)₂. (dioxane) were located in the difference map and were refined isotropically. ORTEPs were generated using ORTEP-3.⁵

CDCC

$[P_2N_2][Rh(COD)]_2(1)$	2005434
$([Rh(COE)][P_2N_2]Li)_2$ dioxane (2)	2005435
$[P_2N_2H]Rh(H)_2$ (3)	2005436
$([Rh(H)_2][P_2N_2]Li)_2$ dioxane (4)	2004254
$([Rh(C_6H_5)H][P_2N_2]Li)_2$ dioxane (5)	2004255
$[P_2N_2H]Rh(COE)$ (6)	2024716

	$[P_2N_2][Rh(COD)]_2(2)$
Chemical formula	$C_{40}H_{66}N_2P_2Rh_2Si_4$
Formula weight	955.06
Crystal system	Monoclinic
Space group	$P2_1/n$
a / Å	10.3474(6)
b / Å	16.4155(12)
c / Å	25.8521(18)
α/°	90
β/°	100.362(2)
γ / °	90
Volume / Å ³	4319.6(5)
T / K	90(2)
Z	4
μ / mm^{-1}	0.980
ρ (calcd) / g/cm ³	1.469
F(000)	1984
Absorption correction	Multi-scan
Crystal size / mm	0.17 x 0.09 x 0.08
Wavelength / Å	0.71073
Reflections collected	31583
Unique reflections	7645 (Rint = 0.0572)
Data / restraints / parameters	7645 / 0 / 459
Goodness-of-fit on F ²	0.971
R indices $[I \ge 2\sigma(I)] / R1$, wR2	0.0333, 0.0699
R indices (all data) / R1, wR2	0.0559, 0.0779
Completeness to theta max.	0.998
Max. and min. transmission	0.9246, 0.8418
Theta range for data collection / °	2.952 - 50.11

Table S1 Crystal structure and refinement data for $[P_2N_2][Rh(COD)]_2$ (2)

 $R1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|; wR2 = [\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma w(F_o^2)^2]^{1/2}$

	([Rh(COE)][P ₂ N ₂]Li) ₂ (dioxane)	$Rh[P_2N_2H](H)_2$
Chemical formula	$C_{68}H_{116}Li_2N_4O_2P_4Si_8Rh_2$	$C_{24}H_{45}N_2P_2Si_4Rh_1$
Formula weight	1594.00	638.83
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_1/c$
a / Å	10.7614(5)	15.1347(8)
b / Å	22.3119(13)	10.0758(5)
c / Å	17.1063(8)	20.3672(10)
α/°	90	90
β / °	92.872(2)	95.293(2)
γ / °	90	90
Volume / Å ³	4102.2(4)	3092.6(3)
T / K	100(2)	100(2)
Z	2	4
μ / mm^{-1}	0.639	0.827
ρ (calcd) / g/cm ³	1.287	1.372
F(000)	1672	1336
Absorption correction	Multi-scan	Multi-scan
Crystal size / mm	0.27 x 0.17 x 0.17	0.48 x 0.35 x 0.28
Wavelength / Å	0.71073	0.71073
Reflections collected	16275	35414
Unique reflections	7270 (Rint = 0.0405)	9055 (Rint = 0.0269)
Data / restraints / parameters	7270 / 30 / 496	9055 / 0 / 318
Goodness-of-fit on F ²	1.052	1.134
R indices $[I > 2\sigma(I)] / R1$, wR2	0.0498, 0.1230	0.0231, 0.0649
R indices (all data) / R1, wR2	0.0761, 0.1368	0.0268, 0.0667
Completeness to theta max.	0.972	0.999
Max. and min. transmission	0.8971, 0.6689	0.7933, 0.7095
Theta range for data collection / °	3.65 - 50.628	2.702 - 60.09

Table S2 Crystal structure and refinement data for $([Rh(COE)][P_2N_2]Li)_2(dioxane)$ (2) and $Rh[P_2N_2H](H)_2$ (3)

 $R1 = \Sigma \|F_o| - |F_c| / \Sigma |F_o|; wR2 = [\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma w(F_o^2)^2]^{1/2}$

	$([Rh(C_6H_5)H][P_2N_2]Li)_2(dioxane)$	([Rh(H) ₂][P ₂ N ₂]Li) ₂ (dioxane)
Chemical formula	$C_{88}H_{128}Li_2N_4O_2P_4Rh_2Si_8\\$	$C_{68}H_{120}Li_2N_4O_2Si_8P_4Rh_2$
Formula weight	1842.24	1593.97
Temperature/K	90	90
Crystal system	triclinic	triclinic
Space group	P-1	P-1
a/Å	11.3155(12)	13.1434(14)
b/Å	12.3073(13)	15.766(2)
c/Å	17.4753(18)	19.777(2)
α/°	95.810(7)	101.806(7)
β/°	94.411(7)	108.701(5)
$\gamma/^{\circ}$	103.071(6)	90.185(7)
Volume/Å ³	2345.9(4)	3789.4(8)
Z	1	2
$\rho_{calc}g/cm^3$	1.304	1.397
μ/mm^{-1}	0.569	0.685
F(000)	968.0	1528
Crystal size/mm ³	$0.46 \times 0.32 \times 0.08$	$0.48 \times 0.16 \times 0.04$
Radiation	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	2.354 to 73.384	4.53 to 61.324
Reflections collected	88617	93347
Independent reflections	22948 [$R_{int} = 0.0355$, $R_{sigma} = 0.0334$]	$28456 [R_{int} = 0.1029, R_{sigma} = 0.0910]$
Data/restraints/parameters	22948/0/508	28456/0/738
Goodness-of-fit on F ²	0.805	1.031
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0293, wR_2 = 0.0977$	$R_1 = 0.0642, wR_2 = 0.1528$
Final R indexes [all data]	$R_1 = 0.0364, wR_2 = 0.1066$	$R_1 = 0.1023, wR_2 = 0.1728$
Largest diff. peak/hole / e Å ⁻³	0.91/-0.52	2.88/-1.95

Table S3 Crystal structure and refinement data for $([Rh(C_6H_5)H][P_2N_2]Li)_2(dioxane)$ (5) and $([Rh(H)_2][P_2N_2]Li)_2(dioxane)$ (4)

 $R1 = \Sigma \|F_o| - |F_c| / \Sigma |F_o|; wR2 = [\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma w(F_o^2)^2]^{1/2}$

$Rh[P_2N_2H](COE)$ (6)	
$C_{32}H_{57}N_2P_2RhSi_4$	
747.00	
90	
orthorhombic	
$P2_{1}2_{1}2_{1}$	
12.0577(8)	
16.8079(12)	
18.6727(14)	
90	
90	
90	
3784.3(5)	
4	
1.311	
0.686	
1576.0	
$0.17 \times 0.15 \times 0.12$	
MoKa ($\lambda = 0.71073$)	
4.02 to 61.032	
11527	
11527 [$R_{int} = 0.0686, R_{sigma} = 0.0423$]	
11527/0/379	
1.067	
$R_1 = 0.0281, wR_2 = 0.0575$	
$R_1 = 0.0329, wR_2 = 0.0590$	
0.42/-0.48	

Table S4 Crystal structure and refinement data for $Rh[P_2N_2H](COE)$ (6)

_

 $R1 = \Sigma \|F_o| - |F_c| / \Sigma |F_o|; wR2 = [\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma w(F_o^2)^2]^{1/2}$

References

- 1. SAINT, Version 8.18C; Bruker AXS Inc.: Madison, Wisconson, USA, 2012.
- 2. *SADABS*, Version 2008/1; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.
- 3. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. *Appl. Crystallogr.* **2009**, *42*, 339-341.
- 4. Sheldrick, G. M. Acta Cryst. A 2008, 64, 112-122.
- 5. Farrugia, L. J. J. Appl. Crystallogr. 2012, 45, 849-854.