Lipophilic Re(CO)₃Pyca Complexes for Mid-IR Imaging Applications

Briana R. Schrage,^a Baylee R. Frisinger,^a Sarah J. Schmidtke Sobeck^b and Christopher J. Ziegler^{*a}

a Department of Chemistry, University of Akron, Akron, Ohio 44312-3601, United States b Department of Chemistry, College of Wooster, Wooster, Ohio 44691, United States

Supplementary Information

Table of Contents

	Page
Figure S1: ¹ H NMR (300 MHz) of 1a in CDCl ₃ .	S5
Figure S2: ¹ H NMR (300 MHz) of 1b in CDCl ₃ .	S6
Figure S3: ¹ H NMR (300 MHz) of 2a in CDCl ₃ .	S7
Figure S4: ¹ H NMR (300 MHz) of 2b in CDCl ₃ .	S 8
Figure S5: ¹ H NMR (300 MHz) of 3a in CDCl ₃ .	S9
Figure S6: ¹ H NMR (300 MHz) of 3b in CDCl ₃ .	S10
Figure S7: ¹ H NMR (300 MHz) of 4a in CDCl ₃ .	S11
Figure S8: ¹ H NMR (300 MHz) of 4b in CDCl ₃ .	S12
Figure S9: ¹ H NMR (300 MHz) of 5a in CDCl ₃ .	S13
Figure S10: ¹ H NMR (300 MHz) of 5b in CDCl ₃ .	S14
Figure S11: ¹³ C{ ¹ H} NMR (125 MHz) of 1a in CDCl ₃ .	S15
Figure S12: ${}^{13}C{}^{1}H$ NMR (125 MHz) of 1b in CDCl ₃ .	S16
Figure S13: ¹³ C{ ¹ H} NMR (125 MHz) of 2a in CDCl ₃ .	S17
Figure S14: ¹³ C{ ¹ H} NMR (125 MHz) of 2b in CDCl ₃ .	S18
Figure S15: ¹³ C{ ¹ H} NMR (125 MHz) of 3a in CDCl ₃ .	S19
Figure S16: ¹³ C{ ¹ H} NMR (125 MHz) of 3b in CDCl ₃ .	S20
Figure S17: ¹³ C{ ¹ H} NMR (125 MHz) of 4a in CDCl ₃ .	S21
Figure S18: ¹³ C{ ¹ H} NMR (125 MHz) of 4b in CDCl ₃ .	S22
Figure S19: ¹³ C{ ¹ H} NMR (125 MHz) of 5a in CDCl ₃ .	S23
Figure S20: ¹³ C{ ¹ H} NMR (125 MHz) of 5b in CDCl ₃ .	S24
Figure S21: High-resolution ESI mass spectra of 1a.	S25
Figure S22: High-resolution ESI mass spectra of 1b.	S26
Figure S23: High-resolution ESI mass spectra of 2a.	S27
Figure S24: High-resolution ESI mass spectra of 2b.	S28
Figure S25: High-resolution ESI mass spectra of 3a.	S29
Figure S26: High-resolution ESI mass spectra of 3b.	S30
Figure S27: High-resolution ESI mass spectra of 4a.	S31
Figure S28: High-resolution ESI mass spectra of 4b.	832
Figure S29: High-resolution ESI mass spectra of 5a.	S33

Figure S30: High-resolution ESI mass spectra of 5b.	S34
Figure S31: UV-visible spectra for compounds 1a and 1b in DCM.	S35
Figure S32: UV-visible spectra for compounds 2a and 2b in DCM.	S35
Figure S33: UV-visible spectra for compounds 3a and 3b in DCM.	S36
Figure S34: UV-visible spectra for compounds 4a and 4b in DCM.	S36
Figure S35: UV-visible spectra for compounds 5a and 5b in DCM.	S37
Figure S36: Solvent polarity index (<i>P</i> ') versus λ_{max} for 1a .	S38
Figure S37: Solvent polarity index (<i>P</i> ') versus λ_{max} for 2a .	S38
Figure S38: Solvent polarity index (<i>P</i> ') versus λ_{max} for 3a .	S39
Figure S39: Solvent polarity index (<i>P</i> ') versus λ_{max} for 4a .	S39
Figure S40: Solvent polarity index (<i>P</i> ') versus λ_{max} for 5a .	S40
Figure S41: Solvent polarity index (<i>P</i> ') versus λ_{max} for 1b .	S40
Figure S42: Solvent polarity index (<i>P</i> ') versus λ_{max} for 2b .	S41
Figure S43: Solvent polarity index (<i>P</i> ') versus λ_{max} for 3b .	S41
Figure S44: Solvent polarity index (<i>P</i> ') versus λ_{max} for 4b .	S42
Figure S45: Solvent polarity index (<i>P</i> ') versus λ_{max} for 5b .	S42
Figure S46: DSC thermogram of 1a.	S43
Figure S47: DSC thermogram of 1b.	S44
Figure S48: DSC thermogram of 2a.	S45
Figure S49: DSC thermogram of 2b.	S46
Figure S50: DSC thermogram of 3a.	S47
Figure S51: DSC thermogram of 3b.	S48
Figure S52: DSC thermogram of 4a.	S49
Figure S53: DSC thermogram of 4b.	S50
Figure S54: DSC thermogram of 5a.	S51
Figure S55: DSC thermogram of 5b.	S52
Figure S56: The structures of compound 1a with 35% thermal ellipsoids.	S53
Figure S57: The structures of compound 1b with 35% thermal ellipsoids.	S54

Figure S58: The structures of compound 2a with 35% thermal ellipsoids.	S55
Figure S59: The structures of compound 2b with 35% thermal ellipsoids.	S56
Figure S60: The structures of compound 3a with 35% thermal ellipsoids.	S57
Figure S61: The structures of compound 3b with 35% thermal ellipsoids.	S58
Figure S62: The structures of compound 5b with 35% thermal ellipsoids.	S59
Figure S63: FTIR spectrum of 100 mol % DOPC vesicles.	S60
Figure S64: FTIR spectrum of 95 mol % DOPC vesicles, and 5 mol %	S60
by Re(I) content of compound 5a.	
Table S1: X-ray crystal data and structure parametersfor compounds 1a,b and 2a,b.	S61
Table S2 : X-ray crystal data and structure parametersfor compounds 3a,b and 5b.	S62
Table S3: Selected bond lengths and angles for compounds 1a,b and 2a,b.	S63
Table S4: Selected bond lengths and angles for compounds 3a,b, and 5b.	S64

Figure S1: ¹H NMR (300 MHz) of 1a in CDCl₃.

Figure S2: ¹H NMR (300 MHz) of 1b in CDCl₃.

Figure S3: ¹H NMR (300 MHz) of 2a in CDCl₃.

Figure S4: ¹H NMR (300 MHz) of 2b in CDCl₃.

Figure S5: ¹H NMR (300 MHz) of 3a in CDCl₃.

Figure S6: ¹H NMR (300 MHz) of **3b** in CDCl₃.

Figure S7: ¹H NMR (300 MHz) of 4a in CDCl₃.

Figure S8: ¹H NMR (300 MHz) of 4b in CDCl₃.

Figure S9: ¹H NMR (300 MHz) of 5a in CDCl₃.

Figure S10: ¹H NMR (300 MHz) of 5b in CDCl₃.

Figure S11: ${}^{13}C{}^{1}H$ NMR (125 MHz) of 1a in CDCl₃.

Figure S12: ${}^{13}C{}^{1}H$ NMR (125 MHz) of 1b in CDCl₃.

Figure S13: ¹³C{¹H} NMR (125 MHz) of 2a in CDCl₃.

Figure S14: ¹³C{¹H} NMR (125 MHz) of **2b** in CDCl₃.

Figure S15: ¹³C{¹H} NMR (125 MHz) of **3a** in CDCl₃.

Figure S16: ¹³C{¹H} NMR (125 MHz) of **3b** in CDCl₃.

Figure S17: ¹³C{¹H} NMR (125 MHz) of 4a in CDCl₃.

Figure S18: ¹³C{¹H} NMR (125 MHz) of 4b in CDCl₃.

Figure S19: ¹³C{¹H} NMR (125 MHz) of 5a in CDCl₃.

Figure S20: ¹³C{¹H} NMR (125 MHz) of 5b in CDCl₃.

Figure S21: High-resolution ESI mass spectra of 1a. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S22: High-resolution ESI mass spectra of 1b. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S23: High-resolution ESI mass spectra of 2a. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S24: High-resolution ESI mass spectra of 2b. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S25: High-resolution ESI mass spectra of 3a. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S26: High-resolution ESI mass spectra of **3b**. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S27: High-resolution ESI mass spectra of 4a. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S28: High-resolution ESI mass spectra of 4b. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S29: High-resolution ESI mass spectra of 5a. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S30: High-resolution ESI mass spectra of 5b. Top: calculated spectrum. Bottom: experimental spectrum.

Figure S31: UV-visible spectra for compounds 1a and 1b in DCM.

Figure S32: UV-visible spectra for compounds 2a and 2b in DCM.

Figure S33: UV-visible spectra for compounds 3a and 3b in DCM.

Figure S34: UV-visible spectra for compounds 4a and 4b in DCM.

Figure S35: UV-visible spectra for compounds 5a and 5b in DCM.

Figure S36: Solvent polarity index (*P*') versus λ_{max} for **1a**.

Figure S37: Solvent polarity index (*P*') versus λ_{max} for **2a**.

Figure S38: Solvent polarity index (*P*') versus λ_{max} for **3a**.

Figure S39: Solvent polarity index (*P*') versus λ_{max} for **4a**.

Figure S40: Solvent polarity index (*P*') versus λ_{max} for **5a**.

Figure S41: Solvent polarity index (*P*') versus λ_{max} for **1b**.

Figure S42: Solvent polarity index (*P*') versus λ_{max} for **2b**.

Figure S43: Solvent polarity index (*P*') versus λ_{max} for **3b**.

Figure S44: Solvent polarity index (*P*') versus λ_{max} for **4b**.

Figure S45: Solvent polarity index (*P*') versus λ_{max} for **5b**.

Figure S46: DSC thermogram for 1a.

Figure S47: DSC thermogram of 1b.

Figure S48: DSC thermogram of 2a.

Figure S49: DSC thermogram of 2b.

Figure S50: DSC thermogram of 3a.

Figure S51: DSC thermogram of 3b.

Figure S52: DSC thermogram of 4a.

Figure S53: DSC thermogram of 4b.

Figure S54: DSC thermogram of 5a.

Figure S55: DSC thermogram of 5b.

Figure S56: The structures of compound 1a with 35% thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

Figure S57: The structures of compound **1b** with 35% thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

Figure S58: The structures of compound **2a** with 35% thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

Figure S59: The structures of compound **2b** with 35% thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

Figure S60: The structures of compound 3a with 35% thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

Figure S61: The structures of compound **3b** with 35% thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

Figure S62: The structures of compound 5b with 35% thermal ellipsoids. Hydrogen atoms have been omitted for clarity.

Figure S63: FTIR spectrum of 100 mol % DOPC vesicles.

Figure S64: FTIR spectrum of 95 mol % DOPC, and 5 mol % by Re(I) content of compound 5a vesicles.

Compound	1a	1b	2a	2b
CCDC	2040147	2040148	2040149	2040150
Empirical formula	$C_{14}H_{16}ClN_2O_3Re$	$C_{14}H_{16}BrN_2O_3Re$	$C_{16}H_{20}ClN_2O_3Re$	$C_{16}H_{20}BrN_2O_3Re$
Formula weight	481.94	526.40	509.99	554.45
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_1/c$	C2/c
a/ Å	12.987(15)	13.0993(5)	14.1835(10)	37.124(10)
b/ Å	9.232(11)	9.2231(4)	9.7002(7)	8.127(2)
c/ Å	13.131(16)	13.0735(5)	12.7862(9)	12.214(4)
α(°)	90	90	90	90
β(°)	92.96(2)	92.466(2)	91.480(3)	95.870(10)
γ(°)	90	90	90	90
Volume (Å ³)	1572(3)	1578.03(11)	1758.6(2)	3665.5(18)
Ζ	4	4	4	8
$Dc (Mg/m^3)$	2.036	2.216	1.926	2.009
μ (mm ⁻¹)	7.909	10.243	7.076	8.825
F(000)	920	992	984	2112
reflns collected	14201	14638	16206	34493
indep. reflns	3877	3876	4374	4544
GOF on F ²	1.036	1.011	1.071	1.041
R1 (on F_0^2 , I >	0.0322	0.0323	0.0275	0.0215
2σ(I))				
wR2 (on F_0^2 , I	0.0752	0.0615	0.0619	0.0539
> 2 $\sigma(I)$)				
R1 (all data)	0.0426	0.0452	0.0397	0.0260
wR2 (all data)	0.0797	0.0665	0.0810	0.0550

 Table S1: X-ray crystal data and structure parameters for compounds 1a,b and 2a,b.

Compound	3 a	3b	5b
CCDC	2040151	2040152	2040153
Empirical	$C_{40}H_{56}Cl_2N_4O_6Re_2$	$C_{40}H_{56}Br_2N_4O_6Re_2$	C ₂₃ H ₃₄ BrN ₂ O ₃ Re
formula			
Formula weight	1132.18	1221.10	652.63
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1
a/ Å	6.460(4)	6.499(3)	6.5604(5)
b/ Å	8.018(4)	8.104(4)	8.0273(5)
c/ Å	22.053(13)	22.210(11)	24.7618(19)
α(°)	84.53(3)	87.49(4)	96.463(3)
β(°)	85.03(3)	82.67(3)	94.773(3)
	75.25(3)	74.59(3)	103.929(2)
Volume (Å ³)	1097.2(10)	1118.4(9)	1249.37(16)
Ζ	1	1	2
$Dc (Mg/m^3)$	1.714	1.813	1.735
μ (mm ⁻¹)	5.680	7.240	6.487
F(000)	556	592	640
reflns collected	48124	42444	61344
indep. reflns	5473	5549	6226
GOF on F ²	1.060	1.068	1.020
R1 (on F_0^2 , I >	0.0349	0.0381	0.0155
2σ(I))			
wR2 (on F_o^2 , I >	0.0807	0.0665	0.0373
2σ(I))			
R1 (all data)	0.0446	0.0536	0.0170
wR2 (all data)	0.0828	0.0695	0.0377

 Table S2: X-ray crystal data and structure parameters for compounds 3a,b and 5b.

	1 a	1b	2a	2b
Re-N _(imine) (Å)	2.184(5)	2.171(4)	2.172(3)	2.167(3)
Re-N _(py) (Å)	2.166(5)	2.161(4)	2.175(4)	2.174(3)
Re-C (Å)	1.917(6)	1.927(5)	1.922(5)	1.919(4)
	1.930(6)	1.908(5)	1.899(5)	1.928(3)
	1.930(6)	1.914(5)	1.936(5)	1.920(3)
$C-O_{(c \equiv 0)}(A)$	1.161(6)	1.147(6)	1.151(6)	1.137(4)
	1.167(6)	1.152(6)	1.161(6)	1.141(4)
	1.159(7)	1.158(5)	1.146(5)	1.148(4)
Re-X _(Cl,Br) (Å)	2.513(3)	2.6196(5)	2.4997(12)	2.6264(7)
N-Re-N (°)	74.65(15)	74.68(14)	74.72(14)	74.85(10)

Table S3: Selected bond lengths and angles for compounds 1a,b and 2a,b.

	3 a	3b	5b
Re-N _(imine) (Å)	2.161(4)	2.152(5)	2.1609(16)
Re-N _(py) (Å)	2.181(4)	2.180(4)	2.1726(16)
Re-C (Å)	1.930(6)	1.908(7)	1.920(2)
	1.914(6)	1.900(6)	1.910(2)
	1.932(5)	1.917(6)	1.926(2)
$C-O_{(c\equiv 0)}(Å)$	1.148(7)	1.162(7)	1.150(3)
	1.142(7)	1.169(7)	1.146(3)
	1.136(6)	1.151(6)	1.148(3)
Re-X _(Cl,Br) (Å)	2.4713(17)	2.6174(13)	2.6226(3)
N-Re-N (°)	74.67(15)	74.90(16)	74.80(6)

Table S4: Selected bond lengths and angles for compounds 3a,b, and 5b.