Supporting Information

An uncoordinatedly tertiary nitrogen based tricarboxylate Calcium network with Lewis acid-base dual catalytic sites for

cyanosilylation of aldehydes

Ying-Xia Wang[#], Hui-Min Wang[#], Pan Meng, Dong-Xia Song, Juan-Juan Hou and Xian-Ming Zhang*

Contents

1. General Information	S2
2. Crystal Structure Data of 1	S3
3. Physical Characterizations of 1	S5
4. Stability Study of 1	S6
5. Gas Adsorption of 1	S7
6. Catalytic Results	S9
7. Catalytic Procedure	S13
8. Chemical Stability of 1 During Catalysis	S15
9. Characterization of Products	S16

1. General Information

All reagents were purchased from Energy Chemical and used without further purification. ¹H NMR and ¹³C NMR were recorded on Bruker Avance III DM 600 MHz. IR spectrum on KBr pellet was obtained using a Nicolet iS50 spectrometer in the region of 4000-400 cm⁻¹. UV-vis spectrum were tested on UV 25500 UV/vis/near-IR spectrophotometer. PXRD patterns were measured on Rigaku D/Max-2500 diffractometer with Cu target tube at 40 kV and 30 mA. Thermogravimetric analyses (TGA) were performed on Shanghai yinnuo 1000 B under N₂ atmosphere at a heating rate of 10 °C min⁻¹. The sorption isotherms for N₂ (77 K) and CO₂ (298 K and 273 K) gas were measured with ASPS 2020 gas sorption analyzer. X-ray photoelectron spectroscopy (XPS) was carried out on a Thermo Fisher SCIENTIFIC using Al Ka Xray source. Binding energies (BE) were calibrated by setting the measured BE of C 1s to 284.65 eV. Scanning electron microscope energy-dispersive X-ray spectroscopy (SEM-EDS) analyses were conducted on a JSM-7500F SEM equipped with an EDAX CDU leap detector. ICP-OES analysis was performed on PerkinElmer Optima 8000 Plasma Emission Spectrometer. GC analysis was performed on Agilent Technologies with 7890B GC system.

2. Crystal Structure Data of 1

MOF Code	1
Formula	$C_{86}H_{70}Ca_3N_4O_{16}$
Fw	1536
T/K	293(2)
Crystal system	triclinic
Space group	<i>P</i> -1
$a/ m \AA$	8.7338(5)
b/Å	12.7784(9)
$c/{ m \AA}$	21.2690(19)
$lpha/^{\circ}$	73.111(7)
$eta/^{\circ}$	84.390(6)
γ/°	76.799(5)
Volume/Å ³	2210.1(3)
Ζ	1
$ ho_{ m calc} g/cm^3$	1.154
μ/mm^{-1}	0.249
<i>F</i> (000)	802.0
Reflections collected	18661
Independent reflections	9410
Data/restraints/parameters	9410/45/539
R _{int}	0.0512
Goodness-of-fit on F ²	0.959
$R1, wR2 [I \ge 2\sigma(I)]$	0.0906, 0.2329
R1, wR2 [all data]	0.1374, 0.2637

 Table S1. Crystal data and structure refinement parameters for 1 Table

Bond length (Å)		Bond Angle (°)			
Ca1–O1	2.298(3)	O1-Ca1-O2	94.21(12)		
Ca1–O2	2.321(3)	O1-Ca1-O3	174.51(12)		
Ca1–O3	2.398(3)	O1-Ca1-O4	133.43(11)		
Ca1–O4	2.625(3)	O1-Ca1-O5	83.40(12)		
Ca1–O5	2.397(3)	O1-Ca1-O6	83.08(12)		
Ca1–O6	2.618(3)	O4–Ca2–Ca1	44.43(7)		
Ca1–O8	2.288(4)	O4-Ca2-O7	96.22(11)		
Ca2–O4	2.294(3)	O6-Ca2-Ca1	44.18(8)		
Ca2-O6	2.277(3)	O6-Ca2-O4	81.32(11)		
Ca2–O7	2.360(3)	C11-N1-C27	119.3(3)		
N1-C11	1.420(5)	C14-N1-C11	120.0(3)		
N1-C14	1.408(5)	C14-N1-C27	120.4(3)		
N1-C27	1.421(5)	O1-C1-O2	124.4(4)		
C1-C2	1.500(5)	O1-C1-C2	117.3(4)		
C3-C4	1.383(5)	O2-C1-C2	118.2(3)		
C5-C6	1.392(5)	C3-C2-C1	120.3(4)		
C8–C9	1.397(6)	C3-C2-C7	119.5(3)		
C10-C11	1.379(6)	C7-C2-C1	120.2(3)		
C12-C13	1.382(6)	C2-C3-C4	120.0(4)		
C14-C15	1.394(6)	C5-C4-C3	121.2(4)		
C16-C17	1.389(6)	C4-C5-C6	118.5(4)		
C17-C18	1.378(6)	C4-C5-C8	120.7(4)		
C20-C21	1.404(6)	C6-C5-C8	120.8(4)		
C21-C22	1.373(6)	C7-C6-C5	120.5(4)		
C23-C24	1.378(6)	C2-C7-C6	120.3(4)		
C24–C25	1.389(6)	C9-C8-C5	121.4(4)		
C27-C28	1.374(6)	C13-C8-C5	121.7(4)		
C29-C30	1.399(5)	С10-С9-С8	120.9(4)		
C30-C31	1.377(6)	C9-C10-C11	121.8(4)		
C31-C32	1.379(5)	C12-C11-C10	118.3(4)		
C34–C35	1.374(5)	C11-C12-C13	120.5(4)		
C36-C37	1.492(5)	С12-С13-С8	121.5(4)		
C38-C39	1.389(5)	C19-C14-C15	117.6(4)		
C39-C40	1.377(5)	C16-C15-C14	120.4(4)		

Table S2. Selected bond lengths (Å) and bond Angles (°) for 1.

Symmetry transformations used to generate equivalent atoms: ¹+X,-1+Y,1+Z; ²1-X,-Y,2-Z; ³1+X,+Y,1+Z; ⁴2-X,1-Y,1-Z; ⁵1+X,1+Y,+Z; ⁶1-X,1-Y,-Z; ⁷2-X,2-Y,-Z ¹+X,-1+Y,1+Z; ²1-X,-Y,2-Z; ³1+X,+Y,1+Z; ⁴2-X,1-Y,1-Z; ⁵+X,1+Y,-1+Z; ⁶1+X,1+Y,+Z; ⁷1-X,1-Y,-Z; ⁸2-X,2-Y,-Z; ⁹-1+X,+Y,-1+Z; ¹⁰-1+X,-1+Y,+Z

3. Physical Characterizations of 1

Figure S1. IR spectrum of 1

Figure S2. EDS spectrum of 1

4. Stability Study of 1

Figure S3. PXRD patterns of 1 upon treatment in different organic solvents for 36 h

Figure S4. TG curves of fresh and activated 1 sample

5. Gas Adsorption of 1

Figure S5. N₂ adsorption-desorption isotherms of 1 at 77K

Figure S6. Density functional theory pore distribution plot of 1

Figure S7. CO_2 adsorption-desorption isotherms of 1 at 273 and 298K

6. Catalytic Results

Table S3. Optimization of reaction condition for cyanosilylation of Aldehydes

$ \qquad \qquad$						
Entry	Molar Ratio of Reactants	Weight of 1	Time	Yield ^a /%		
1 ^b	1:1.2	5 mg	10 h	20		
2	1:1.2	5 mg	12 h	83		
3	1:1.2	10 mg	12 h	87		
4	1:2.0	5 mg	6 h	99		
5°	1:2.0	5 mg	3 h	86		
6 ^d	1:2.0	0 mg	6 h	12		
7 ^e	1:2.0	3 mg	6 h	99		
8^{f}	1:2.0	7 mg	6 h	50		
9g	1:2.0	5 mg	6 h	6		

^a Determined by ¹H NMR; ^b Took place in air, while the others under Ar; ^c In toluene; ^d Without any catalyst; ^e Ca(OAc)₂ (0.01 mmol) as catalyst; ^f H₃TCBPA (0.01 mmol) as catalyst; ^gH₃BTB (0.01 mmol) as catalyst.

Figure S8. Time conversion plots for the optimization of reaction conditions. A, B, D, E corresponded to the same reaction conditions in Figure 2. In C' the ratio between benzaldehyde and $(CH_3)_3SiCN$ was 1:2, while in C (Figure 2) was 1:1.2. Yields were determined by GC.

Figure S9. Time conversion plots for the comparison of 1, without any catalyst, $Ca(OAc)_2$, H_3TCBPA and H_3BTB . Yields were determined by GC.

Entry	Catalyst and Loading	Catalytic active site	Temperature	Time	Yield	Ref. ^a
1	Zn _{0.29} -STU-2, 4 mol%	Mn ²⁺ , Zn ²⁺	r.t.	12 h	100 %	43
2	[(Cu ₄ O _{0.27} Cl _{0.73}) ₃ (H _{0.5} BTT) ₈], 1 mol%	Cu ²⁺	40 °C		96 %	44
3	BINAPDA-Zr-MOF, 1 mol%	Zr^{4+}	r.t.	5 h	45 %	30
4	[Cd ₂ (NiL ¹)(CdL ²)][C d ₂ (NiL ¹)(H ₂ L ²)] ₆ DMF ·5MeOH, 1 mol%	Cd ²⁺ , Ni ²⁺	r.t.	24 h	95 %	45
5	Ce-MDIP1, 2 mol%	Ce ³⁺	r.t.	24 h	95 %	46
6	1 • Cd, 0.6 mol%	Cd^{2+}	r.t.	18 h	94 %	47
7	1, 0.3 mol%	Ca ²⁺ , N	r.t.	6 h	99%	This work

Table S4. Catalytic results of reported Lewis acid MOFs-based catalysts for cyanosilylation of aldehydes

^a References in main text

Table S5. Recycling	experiments for	cyanosilylation	of Aldehydes

\sim CHO + (CH ₃) ₃ SiCH	$N \longrightarrow \bigotimes_{CN}^{OSi(CH_3)_3}$
Run	Yield (%)
1	99
2	99
3	99
4	99
5	99
6	99

Entry	Catalyst and Loading	Cocatalyst	Pressure	Temperature	Time	Yield	Ref. ^a
1	C ₅₄ H ₅₆ Mn ₄ N ₆ O ₂ 2 mol [Mn]%	TBAB	1 atm	80 °C	8 h	99 %	49
2	UiO-66-BAT 2 mol%	TBAI	5 bar	50 °C	6 h	95 %	50
3	Gd-MOF 0.47 mol%	TBAB	2 MPa	80 °C	5 h	98 %	51
4	1 0.3 mol%	TBAB	CO ₂ balloon	100 °C	8 h	91 %	This work

Table S6. Catalytic results of reported MOFs-based catalysts for CO_2 addition to epoxides.

^a References in main text

7. Catalytic Procedure

Figure S10. NMR Yiels vs. Time in thermal filtration experiment of 1 in cyanosilylation of aldehydes

Figure S11. FT-IR of 1-naphthaldehyde, benzaldehyde, 1 and 1 after immersing in benzaldehyde or 1-naphthaldehyde solution for 24h

Figure S12. Mole ratio of benzaldehyde and 1-naphthaldehyde after stirring with 1 for 12 h

Figure S13. Time conversion plot of styrene oxide reacted with CO₂. Yields were determined by ¹H NMR

8. Chemical stability of 1 during catalysis

Figure S14. PXRD patterns of 1 after cyanosilylation of aldehydes

Figure S15. PXRD patterns of 1 before and after conversion of CO₂ with epoxides

9. Characterization of products

¹H NMR (600 MHz, CDCl₃) of **1a**: δ 7.48 (d, 2H, J = 7.4 Hz), 7.43-7.36 (m, 3H), 5.51 (s, 1H), 0.24 (s, 9H). Consistent with reported values [*J. Am. Chem. Soc.*, 2014, **136**, 1746-1749]

¹H NMR (600 MHz, CDCl₃) of **1b**: δ 7.26 (d, 2H, J = 8.0 Hz), 7.09 (d, 2H, J = 8.2 Hz), 5.37 (s, 1H), 2.24 (s, 3H), 0.12 (d, 9H, J = 0.9 Hz). Consistent with reported values [*Inorg. Chem.*, 2017, **56**, 3036-3043].

¹H NMR (600 MHz, CDCl₃) of **1c**: δ 7.37 (d, 2H, *J*=8.7), 6.90 (d, 2H, *J*=8.8), 5.43 (s, 1H), 3.76 (s, 3H), 0.19 (s, 9H). Consistent with reported values [*Inorg. Chem.*, 2017, **56**, 3036-3043].

$$H_3COOC \longrightarrow CN$$

¹H NMR (600 MHz, CDCl₃) of **1d**: δ 7.99 (d, 2H, *J*=8.4), 7.48 (d, 2H, *J*=8.2), 5.52 (s, 1H), 3.83 (s, 3H), 0.17 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ -0.30, 53.65, 63.31, 126.35, 127.22, 130.28, 131.26, 141.03, 166.41.

$$NC \longrightarrow OSi(CH_3)_3$$

¹H NMR (600 MHz, CDCl₃) of **1e**: δ 7.64 (d, 2H, *J*=8.4), 7.55 (d, 2H, *J*=8.2), 5.55 (s, 1H), 0.19 (s, 9H). Consistent with reported values [*Inorg. Chem.*, 2017, **56**, 3036-3043]. ¹³C NMR (151 MHz, CDCl₃): δ -0.23, 62.95, 113.43, 127.01, 132.88, 141.31.

$$F - \underbrace{\hspace{1.5cm}}^{\operatorname{OSi}(\operatorname{CH}_3)_3}_{\operatorname{CN}}$$

¹H NMR (600 MHz, CDCl₃) of **1f**: δ 7.46-7.41 (m, 2H), 7.09-7.03 (m, 2H), 5.47 (s, 1H), 0.20 (s, 9H).¹³C NMR (151 MHz, CDCl₃): δ -0.17, 63.14, 116.16, 128.46, 132.48, 162.48, 164.12.

¹H NMR (600 MHz, CDCl₃) of **1g**: δ 7.50-7.47 (m, 2H), 7.33-7.29 (m, 2H), 5.44 (s, 1H), 0.19 (s, 9H). Consistent with reported values [*J. Am. Chem. Soc.*, 2014, **136**, 1746-1749]

$$\sum_{Br} \xrightarrow{OSi(CH_3)_3}$$

¹H NMR (600 MHz, CDCl₃) of **1h**: δ 7.58 (t, 1H, *J*=1.7), 7.46-7.44 (dd, 1H, *J*=7.5, 1.2), 7.34-7.36 (m, 1H), 7.24-7.23 (t, 1H, *J*=7.9), 5.45 (s, 1H), 0.19 (s, 9H). Consistent with reported values [*Synlett*, 2011, **4**, 551-554]

¹H NMR (600 MHz, CDCl₃) of **1i**: δ 7.40 (dd, 1H, *J*=1.8, 0.8), 6.48 (d, 1H, *J*=3.3), 6.34 (dd, 1H, *J*=3.3, 1.9), 5.51 (s, 1H), 0.14 (s, 9H). Consistent with reported values [*J. Am. Chem. Soc.*, 2014, **136**, 1746-1749]

¹H NMR (600 MHz, CDCl₃) of **1j**: δ 7.28 (d, 2H, *J*=7.3), 7.23 (t, 2H, *J*=7.4), 7.20-7.17 (m, 1H), 6.69 (d, 1H, *J*=15.7), 6.07 (dd, 1H, *J*=15.8, 6.0), 5.00 (dd, 1H, *J*=6.0, 1.3), 0.15 (s, 9H). Consistent with reported values [*J. Am. Chem. Soc.*, 2014, **136**, 1746-1749]

¹H NMR (600 MHz, CDCl₃) of **1k**: δ 7.95 (s, 1H), 7.89-7.82 (m, 3H), 7.58 (dd, 1H, *J*=8.5, 1.8), 7.54-7.50 (m, 2H), 5.68 (s, 1H), 0.29 (s, 9H). Consistent with reported values [*J. Am. Chem. Soc.*, 2014, **136**, 1746-1749]

¹H NMR (600 MHz, CDCl₃) of **1**I: δ 8.41 (d, J = 8.9 Hz, 2H), 8.18 (s, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.44 (ddd, J = 8.9, 6.5, 1.2 Hz, 2H), 7.28 (dd, J = 7.9, 7.0 Hz, 2H), 6.87 (s, 1H), 0.00 (s, 9H).Consistent with reported values [J. *Am. Chem. Soc.*, 2014, **136**, 1746-1749].¹³C NMR (151 MHz, CDCl₃): δ -0.07, 58.21, 123.63, 125.33, 126.05, 127.30, 129.50, 129.59, 130.68, 131.55.

OSi(CH₃)₃

 $\nearrow_{\rm CN}$

¹H NMR (600 MHz, CDCl₃) of **1m**: δ 4.49 (q, J = 6.7, 1H), 1.49 (d, J = 6.7, 3H), 0.16 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ -0.31, 23.11, 57.37, 127.14.

¹H NMR (600 MHz, CDCl₃) of **1n**: δ 4.13 (d, J = 5.8, 1H), 2.01-1.85 (m, 1H), 1.00 (d, J = 6.7, 3H), 0.97 (d, J = 6.8, 3H), 0.16 (s, 9H). ¹³C NMR (151 MHz, CDCl₃): δ -0.33, 17.39, 17.71, 34.00, 67.38, 127.22.

¹H NMR (600 MHz, CDCl₃) of **2a**: *δ* 7.41 (m, 3H), 7.37-7.31 (m, 2H), 5.71-5.62 (m, 1H), 4.84-4.73 (m, 1H), 4.36-4.24 (m, 1H). Consistent with reported values [*Applied Catalysis B: Environmental*, 2019, **254**, 380-390].

¹H NMR (600 MHz, CDCl₃) of **2b**: δ 7.23-7.18 (m, 2H), 6.91 (td, *J*=7.4, 0.9, 1H), 6.83-6.80 (m, 2H), 4.94 (ddt, *J*=6.8, 6.0, 3.5, 1H), 4.49 (t, *J*=8.5, 1H), 4.40 (dd, *J*=8.6, 5.9, 1H), 4.13 (dd, *J*=10.9, 3.3, 1H), 4.00 (dd, *J*=10.9, 3.6, 1H). ¹³C NMR (151 MHz, CDCl₃): δ 66.26, 67.01, 74.47, 114.68, 121.90, 129.69, 155.00, 157.00. Consistent with reported values [*Applied Catalysis B: Environmental*, 2019, **254**, 380-390].

¹H NMR (600 MHz, CDCl₃) of **2c**: δ 4.96 (td, *J*=8.7, 5.2, 1H), 4.59-4.50 (m, 1H), 4.39-4.30 (m, 1H), 3.66-3.59 (m, 2H). Consistent with reported values [*Dalton Trans.*, 2019, **48**, 7612-7618].

¹H NMR (600 MHz, CDCl₃) of **2d**: δ 4.86-4.77 (m, 1H), 4.51 (t, *J*=8.1, 1H), 3.97 (t, *J*=7.8, 1H), 1.45-1.43 (m, 3H). Consistent with reported values [*Applied Catalysis B: Environmental*, 2019, **254**, 380-390].

¹H NMR (600 MHz, CDCl₃) of **2e**: δ 4.61 (m, 1H), 4.48 (t, J=8.2, 1H), 4.03 (dd, J=8.4, 7.0, 1H), 1.80-1.66 (m, 2H), 0.97 (t, J=7.4, 3H). Consistent with reported values [*Dalton Trans.*, 2019, **48**, 7612-7618].

¹H NMR (600 MHz, CDCl₃) of **2f**: δ 5.10-5.06 (m, 2H), 2.11 (ddd, J=7.0, 5.0, 1.4, 2H), 1.83-1.69 (m, 4H). Consistent with reported values [*Applied Catalysis B: Environmental*, 2019, **254**, 380-390].

¹H NMR (600 MHz, CDCl₃) of **2g**: δ 4.62-4.59 (m, 1H), 4.45-4.41 (m, 1H), 3.98-3.94

(m, 1H), 1.70-1.66 (m, 1H), 1.61-1.56 (m, 1H), 1.42-1.29 (m, 4H) 0.82-0.77 (m, 3H). Consistent with reported values [*Chem. Lett.*, 2017, **46**, 968-969].