Supporting Information

for

Thermal hysteresis induced by external pressure in a 3D Hofmann-

type SCO-MOF

Yue Li,^{a*} Qing-Rong Kong,^a Ying Guo,^a Zheng Tang^b

^aCollege of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,

Fujian Province, People's Republic of China. E-mail: liyue1105@sina.cn

^bKey Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Liangxiang Campus, Beijing Institute of Technology, Beijing 102488, People's Republic of China.

	Compound 1		Compound 2			
Temp (K)	293	95	250	100		
formula	FePtC ₁₆ N	$FePtC_{16}N_6O_4H_{18}Br_2$		$FePdC_{16}N_6O_4H_{18}Br_2$		
М	769	769.12		680.43		
cryst syst	tetragonal		tetragonal			
space group	P4/m		P4/m			
a, Å	7.4386(2)	7.3121(5)	7.4285(7)	7.2533(5)		
b, Å	7.4386(2)	7.3121(5)	7.4285(7)	7.2533(5)		
c, Å	13.733(2)	13.3878(18)	13.648(3)	13.346(2)		
a, deg	90	90	90	90		
β, deg	90	90	90	90		
γ, deg	90	90	90	90		
V, Å ³	759.88(13)	715.80(14)	753.1(2)	702.16(14)		
Z	1	1	1	1		
D _c , g cm ⁻³	1.681	1.784	1.500	1.609		
μ, mm ⁻¹	7.729	8.205	3.757	4.029		
F(000)	362.0	362.0	330.0	330.0		
oodness-of-fit on F ²	1.201	1.077	1.136	1.112		
R1 (I $\ge 2\sigma(I))^a$	0.0757	0.0561	0.0672	0.0806		
vR2 (all data) ^a	0.1936	0.1554	0.2215	0.2422		

Table S1. Crystal structure and refinement details for compounds 1 and 2 at different temperature.

Fig. S1 The $\chi_M T$ versus *T* plots for compounds **1-dehydrated** and **2-dehydrated**.

Fig. S2 The asymmetric unit of compound 1.

Table S2. The Fe^{II}–N bond distances in compounds 1 and 2 at different temperature.

	Compound 1		Compound 2	
T/\mathbf{K}	293	95	250	100
Fe ^{II} –N _{dbdpe} (Å)	2.20(2)	2.022(12)	2.129(11)	2.023(14)
$Fe^{II}-N_{NC}$ (Å)	2.132(12)	2.032(11)	2.132(7)	2.002(9)
Fe ^{II} –N _{ave} (Å)	2.167(6)	2.027(12)	2.130(9)	2.013(12)

Table S3. The Fe…Fe distances and Σ_{Fe} of $\{FeN_6\}$ at different temperature for compounds 1

and 2 .					
	Compound 1		Compound 2		
<i>T /</i> K	293	95	250	100	
d_l (Fe···Fe) (Å)	7.439	7.312	7.428	7.253	
$d_2(\text{Fe} \cdots \text{Fe})$ (Å)	13.733	13.388	13.648	13.346	
$\Sigma_{\text{Fe}} \text{ of } \{\text{FeN}_6\} (^\circ)$	12.0	4.8	9.6	6.8	

$$\sum_{(i=1}^{12} |\varphi_i - 90^\circ|$$

Table S4. The host-host, host-guest and guest-guest interactions in compounds 1 and 2.

	Compound 1		Compound 2	
Temperature	293 K	95 K	250 K	100 K
C1–H1…O1 (Å)	2.62(7)	2.49(13)	2.57(9)	2.44(8)
Br1…Br1 (Å)	3.02(1)	2.75(9)	2.85(3)	2.66(7)
O1…O2 (Å)	2.95(1)	2.86(17)	3.13(2)	2.99(12)

Fig. S3 The PXRD patterns of compound 1 at different temperature.

Fig. S5 The PXRD data of compounds 1 and 2 at room temperature collected for each batch.

Fig. S6 The TGA plots of compounds 1, 2 and the dehydrated samples.

Fig. S7 The FIT-IR plots of compounds 1 and 2.