Supporting Information

Facilely controllable synthesis of copperbenzothiadiazole complexes via solvothermal reactions: exploring the customized synthetic approach by experiments

'Green Catalysis Center, College of Chemistry, Zhengzhou University, Henan 450001, China.
${ }^{*}$ College of Chemical Engineering \& Material, Handan University, Hebei, 056005, China.

E-mail: jieding@zzu.edu.cn; E-mail: houhongw@zzu.edu.cn.

Experimental Details

Materials. All chemical reagents were purchased from commercial suppliers without further purification.), the synthetic procedure of $\mathbf{L} \mathbf{1}$ is according to the literature. ${ }^{1}$

Physical Measurements. The FT-IR spectra were recorded in the range of 400-4000 cm^{-1} on a Bruker Tensor 27 spectrophotometer from KBr pellets. The elemental analyses were performed with FLASH EA 1112 elemental analyzer. Powder X-ray diffraction (PXRD) patterns were recorded on $\mathrm{Cu} \mathrm{K} \alpha 1$ radiation on a PANalyticalX'Pert PRO diffractometer. Thermal analyses were carried out on a Netzsch STA 449C thermal analyzer at a heating rate of $10{ }^{\circ} \mathrm{C} \min ^{-1}$ in air. UV-Vis absorption spectra were obtained from a JASCO FP-8300 UV/Vis Spectrophotometer at room temperature. The measurements of steady-state emission spectra were conducted on a JASCO FP-8300 fluorescence spectrophotometer at room temperature. The emission lifetime were detected with a photoluminescence quantum yield measurement system (Edinburgh Instruments Ltd FLS980 Fluorescence Spectrometer, the fluorescence lifetime measurement range is $100 \mathrm{ps} \sim 50 \mu \mathrm{~s}$.) at room temperature. The results from the PXRD patterns are in close agreement with that calculated from the single-crystal structure determination. Due to the TGA result, there was no solvent molecules in C2 and C3. Hence, N_{2} gas sorption experiments of coordination polymers C2 and C3 were tested without the solvent-removing treatments, which were collected on a Micromeritics 3Flex surface area and pore size analyzer under ultrahigh vacuum in a clean system, with a diaphragm and turbo pumping system. Ultrahigh-purity-grade ($>99.999 \%$) N_{2} gas was applied in all adsorption
measurements. The experimental temperature was maintained by liquid nitrogen (77 K).

Crystal structure of C1-C5 determination by X-ray diffraction was performed on Bruker D8 VENTURE with the X-ray source (Mo-K α radiation, $\lambda=0.71073 \AA$) at temperature of 295 K. Absorption corrections were implemented by SADABS-2016/2 (Bruker, 2016/2). An empirical absorption correction was applied. The data were corrected for Lorentz and polarization effects. The structures were solved by direct methods and refined by full-matrix least-squares and difference Fourier techniques, based on F^{2}, using ShelXL. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were positioned geometrically and refined using a riding model. All the hydrogen atoms were included in the final refinement. The final formulas were determined by combing element analyses and XPS. Crystallographic crystal data and structure processing parameters for C1-C5 are listed in Table S1-S2. Hydrogen bonding geometry, selected bond lengths and bond angles for C1-C5 are listed in Table S3-S5 of the Supporting Information. Crystallographic data for C1-C5 have been deposited at the Cambridge Crystallographic Data Centre with CCDC reference numbers CCDC 2031789-2031793.

Table S1. Crystal data and structure refinement data of complexes C1-C5.

compound	C1	C2	C3	C4	C5
Formula	$\begin{aligned} & \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{CuIN}_{7} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrCu} \\ & \mathrm{~N}_{6} \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{32} \mathrm{H}_{20} \mathrm{Br}_{3} \mathrm{Cu}_{3} \mathrm{~N} \\ & { }_{12} \mathrm{~S}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{16} \mathrm{H}_{8} \mathrm{ClCu} \\ & \mathrm{~N}_{6} \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{16} \mathrm{H}_{8} \mathrm{ClCu}_{0.5} \\ & \mathrm{~N}_{6} \mathrm{~S} \end{aligned}$
Fw	551.87	463.83	1067.07	415.33	383.56
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic	Monoclinic
space group	P-1	$\mathrm{P} 2{ }_{1} / \mathrm{c}$	C2/c	P-1	C2/c
$a(\AA)$	7.8851(8)	7.8338(3)	14.745(5)	7.9536(13)	13.1118(6)
$b(\AA)$	9.4706(8)	17.9378(6)	11.282(4)	7.9780(17)	12.8370(6)
$c(\AA)$	14.9633(13)	11.5775(4)	21.686(7)	12.239(2)	18.0339(8)
$\alpha{ }^{\circ}$)	92.531(3)	90.000	90	98.887(8)	90.000
$\beta\left({ }^{\circ}\right)$	102.966(3)	93.2380(10)	107.907(12)	99.985(5)	102.238(2)
$\gamma\left({ }^{\circ}\right)$	113.898(3)	90.000	90	94.096(7)	90.000
$V\left(\AA^{3}\right)$	984.06(16)	1624.29(10)	3432.8(19)	751.8(2)	2966.4(2)
Z	2	4	4	2	8
$D c\left(\mathrm{~g} \cdot \mathrm{~cm}^{-3}\right)$	1.862	1.897	2.065	1.835	1.718
$\mu\left(\mathrm{mm}^{-1}\right)$	2.804	3.945	5.502	1.781	1.107
2θ range (${ }^{\circ}$)	5.652 55.224 \quad to	$\begin{array}{lr} 5.682 & \text { to } \\ 55.168 & \end{array}$	4.672 to 54.99	$\begin{array}{ll} 5.718 & \text { to } \\ 55.136 & \end{array}$	4.492 64.934
$F(000)$	540.0	1632	2080.0	416.0	1548.0
Data $/$ restraints $/$ parameters	4556/0/254	3751/0/234	3911/0/240	3453/0/229	5323/1/231
Reflections collected	15213	34292	18021	34289	44105
Goodness of fit on F^{2}	1.058	1.035	1.036	1.048	1.031
Final R indices [I > 2sigma (I)]	$\begin{aligned} & \mathrm{R}_{1}=0.0250 \\ & \mathrm{wR}_{2}=0.0567 \end{aligned}$	$\begin{array}{ll} \mathrm{R}_{1} & = \\ 0.0228, \\ \mathrm{wR}_{2} & = \\ 0.0488 & \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{1}=0.0232 \\ & \mathrm{wR}_{2}=0.0518 \end{aligned}$	$\begin{array}{ll} \hline \mathrm{R}_{1} & = \\ 0.0262, & \\ \mathrm{wR}_{2} & = \\ 0.0694 & \\ \hline \end{array}$	$\begin{aligned} & \mathrm{R}_{1}=0.0403 \\ & \mathrm{wR}_{2}=0.0945 \end{aligned}$
Final R indices [all data]	$\begin{aligned} & \mathrm{R}_{1}=0.0321 \\ & \mathrm{wR}_{2}=0.0592 \end{aligned}$	$\begin{array}{ll} \mathrm{R}_{1} & = \\ 0.0334, \\ \mathrm{wR}_{2} \\ 0.0521 \end{array}=$	$\begin{aligned} & \mathrm{R}_{1}=0.0315 \\ & \mathrm{wR}_{2}=0.0544 \end{aligned}$	$\begin{array}{ll} \mathrm{R}_{1} & = \\ 0.0299, \\ \mathrm{wR}_{2} & = \\ 0.0715 \end{array}$	$\begin{aligned} & \mathrm{R}_{1}=0.0708 \\ & \mathrm{wR}_{2}=0.1052 \end{aligned}$

| Largest
 peak
 hole/e \AA^{-3}
 and | $0.42 /-0.81$ | $0.32 /-0.39$ | $0.40 /-0.38$ | $0.45 /-0.32$ | $0.51 /-0.92$ |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- |

Table S2. Hydrogen bonding geometry $\left(\AA,^{\circ}\right)$ for C1-C5.

C1				
D-H $\cdots \mathrm{A}$	D-H	H $\cdots \mathrm{A}$	D \cdots A	< D-H..A
N3-H3 \cdots I1	0.86	2.75	3.6134(19)	176.8
N5-H5 ..N2	0.86	2.38	2.794(3)	110.4
C8-H8 \cdots N6	0.93	2.36	2.950(3)	121.4
C15-H15 \cdots I1 ${ }^{\# 2}$	0.93	3.16	4.089(2)	177.2
C18-H18A $\cdots{ }^{\text {I }}{ }^{\# 3}$	0.96	3.18	4.039(3)	150.4
C2				
D-H $\cdots \mathrm{A}$	D-H	H...A	D...A	$<\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
N5-H5 \cdots Br ${ }^{\# 3}$	0.75(2)	2.85(2)	3.4865(19)	145(2)
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Br} 1$	0.93	2.83	3.518(2)	131.5
$\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{Br} 1^{\# 4}$	0.93	3.13	3.9012(19)	141.6
$\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{Br} 1^{\# 2}$	0.93	2.77	3.452(2)	130.9
C16-H16 \cdots N1 ${ }^{\# 4}$	0.93	2.68	3.378(3)	132.9
C3				
D-H..A	D-H	H...A	D...A	$<\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
N5-H5 ${ }^{\text {- }}$ - ${ }^{\text {2 }}{ }^{\text {1 }}$	0.79(3)	2.93(3)	3.533(2)	136(2)
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Br} 1^{\# 3}$	0.93	3.05	3.769(3)	135.2
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Br} 1^{\# 4}$	0.93	3.13	3.829(3)	133.7
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Br} 2$	0.93	3.08	3.548(2)	113.3
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Br} 1^{\# 3}$	0.93	2.99	3.581(3)	123.1
C16-H16 $\cdot \mathrm{Br} 1^{\# 1}$	0.93	3.02	3.663(3)	127.4
C4				
D-H..A	D-H	H...A	D...A	$<\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
C16-H16 \cdots Cl1 ${ }^{\# 3}$	0.93	2.89	3.631(2)	138.0
C4-H4...N1 ${ }^{\# 1}$	0.93	2.57	3.442(2)	156.6
C13-H13 ..N $5^{\# 4}$	0.93	2.59	3.422(3)	149.0
C5				
D-H..A	D-H	H...A	D...A	$<\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{~N} 1^{\# 1}$	0.93	2.66	3.584(2)	169.9
C13-H13 .. $\mathrm{Cl1}^{\# 2}$	0.93	2.88	3.712(19)	150.0
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Cl1}{ }^{\# 3}$	0.95(2)	2.73(2)	3.461(17)	134.1(17)
C16-H16 \cdots Cl1 ${ }^{\# 3}$	0.88(3)	2.91(3)	3.601(2)	137(2)

Symmetry codes:
C1: \#1 = 2-x, 2-y, 2-z; \#2 = x-1, y, z-1, z-1/2; \#3 = -x+2, -y+1, -z+2;
C2: $\# 1=2-x, 1-y, 2-z ; \# 2=1-x, 1-y, 1-z ; \# 3=x-1, y, z-1 ; \# 4=x, y, z-1$;
C3: $\# 1=3 / 2-x, 3 / 2-y, 1-z ; \# 2=1-x,+y, 1 / 2-z ; \# 3=-x+1,-y+1,-z+1, \# 4=x-1 / 2, y+1 / 2, z ;$
C4: \#1 = 1-x, -y, 1-z; \#2 = 2-x, 1-y, 2-z; \#3 = -x+1, -y+1, -z+1; \#4 =-x+2, -y+2,-z+1;
C5: $\# 1=-x+1 / 2,-y+3 / 2,-z+1 ; \# 2=x+1 / 2,-y+3 / 2, z-1 / 2 ; \# 3=-x+1,-y+1,-z+1$;

Table S3. Selected Bond Lengths (\AA) for $\mathbf{C 1}-\mathbf{C} 5$.

C1					
I1-Cu1	2.6081(5)	Cu1-N7	2.036(2)	N4-C5	1.346(3)
I1-Cu1 ${ }^{\# 1}$	2.7102(4)	S1-N2	1.6150(19)	N5-C9	1.379(3)
N1-S1	1.611(2)	C1-N4	1.347(3)	N5-C12	1.392(3)
N1-C11	1.347(3)	N2-C10	1.343(3)	N6-C12	1.332(3)
$\mathrm{Cu} 1-\mathrm{Cu} 1^{\# 1}$	2.9964(7)	N3-C5	1.364(3)	N6-C16	1.351(3)
Cu1-N4	2.0791(19)	N3-C6	1.412(3)	N7-C17	1.124(3)
C2					
Br1-Cu1	2.6091(3)	N1-C8	1.349(2)	N5-C10	1.387(2)
Brl-Cu1 ${ }^{\# 1}$	2.6561(3)	N2-C9	1.344(2)	N5-C12	1.393(2)
Cu1-N4	2.0069(16)	N3-C5	1.370(3)	N6-C12	1.342(2)
$\mathrm{Cu} 1-\mathrm{N} 6^{\# 2}$	$2.0128(15)$	N3-C7	1.410(2)	N6-C16	1.348(2)
S1-N1	1.6123(18)	N4-C1	1.349(3)		
S1-N2	1.6191(17)	N4-C5	1.348(2)		
C3					
Brl-Cu1	2.4764(8)	S1-N2	1.626(2)	N4-C1	1.379(3)
$\mathrm{Br} 1-\mathrm{Cu} 2$	2.4253(6)	N1-C8	$1.345(3)$	N4-C5	1.399(3)
$\mathrm{Br} 2-\mathrm{Cu} 2$	2.3682(9)	N2-C9	1.341(3)	N4-C6	1.385(3)
$\mathrm{Cu} 1-\mathrm{Cu} 2$	2.7964(8)	N3-C5	1.346 (3)	N5-C10	$1.388(3)$
Cu1-N3	1.9609(18)	N3-C7	1.385(3)	N5-C12	1.404(3)
$\mathrm{Cu} 1-\mathrm{N} 6^{\# 1}$	2.0078(18)	N6-C12	$1.345(3)$		
S1-N1	1.625(2)	N6-C16	1.350(3)		
C4					
$\mathrm{Cu} 1-\mathrm{N} 3^{\# 1}$	1.8765(13)	N4-C6	1.401(2)	N3-C5	1.339(2)
Cu1-N3	$1.8765(13)$	N4-C1	1.386(2)	N5-C10	1.363(2)
$\mathrm{Cu} 2-\mathrm{Cl1}^{\# 2}$	2.1134(7)	N6-C11	$1.3948(19)$	N5-C12	1.327(2)
Cu2-Cl1	2.1134(7)	N6-C12	1.412(2)	N1-C8	1.341(2)
S1-N1	$1.6328(16)$	N6-C16	1.385(2)	N2-C9	1.343(2)
S1-N2	$1.6256(16)$	N3-C7	$1.378(2)$	N4-C5	1.4004(19)
C5					
$\mathrm{Cu} 1-\mathrm{Cl} 1$	2.2813(5)	N1-C8	1.334(2)	N4-C6	1.394(2)
$\mathrm{Cu} 1-\mathrm{Cl1}^{\# 1}$	2.2814(5)	S1-N2	$1.6178(16)$	N5-C10	1.364(2)
$\mathrm{Cu} 1-\mathrm{N} 3^{\# 1}$	1.9593(12)	N2-C9	1.339(2)	N5-C12	1.325(2)
Cu1-N3	1.9594(12)	N3-C5	1.335(2)	N6-C11	1.3944(18)
C1-N4	1.380(2)	N3-C7	1.3650(18)	N6-C12	1.405(2)
N1-S1	1.6251(15)	N4-C5	1.3981(18)	N6-C16	1.376(2)

Symmetry codes:
C1: \#1 = 2-x, 2-y, 2-z; \#2 = x-1, y, z-1, z-1/2; \#3 = -x+2, -y+1, -z+2;
C2: $\# 1=2-x, 1-y, 2-z ; \# 2=1-x, 1-y, 1-z ; \# 3=x-1, y, z-1 ; \# 4=x, y, z-1$;
C3: $\# 1=3 / 2-x, 3 / 2-y, 1-z ; \# 2=1-x,+y, 1 / 2-z ; \# 3=-x+1,-y+1,-z+1, \# 4=x-1 / 2, y+1 / 2, z ;$
C4: $\# 1=1-x,-y, 1-z ; \# 2=2-x, 1-y, 2-z ; \# 3=-x+1,-y+1,-z+1 ; \# 4=-x+2,-y+2,-z+1$;

$$
\text { C5: } \# 1=-x+1 / 2,-y+3 / 2,-z+1 ; \# 2=x+1 / 2,-y+3 / 2, z-1 / 2 ; \# 3=-x+1,-y+1,-z+1 ;
$$

Table S4. Selected Bond Angels (degree) for C1-C5.

C1			
$\mathrm{Cu} 1-\mathrm{I} 1-\mathrm{Cu} 1^{\# 1}$	68.554(13)	N7-Cu1-I1	111.72(7)
$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 1^{\# 1}$	111.446(13)	N7-Cu1-I1 ${ }^{\# 1}$	100.53(7)
I1-Cu1-Cu1 ${ }^{\# 1}$	57.337(12)	N7-Cu1-Cu1 ${ }^{\# 1}$	119.17(6)
$\mathrm{I} 1^{\# 1}-\mathrm{Cu} 1-\mathrm{Cu} 1^{\# 1}$	54.109(12)	N7-Cu1-N4	105.61(8)
N4-Cu1-I1	120.57(5)	C5-N3-C6	125.70(19)
N4-Cu1-I1 ${ }^{\# 1}$	104.90(5)	C9-N5-C12	130.83(19)
N4-Cu1-Cu1 ${ }^{\# 1}$	132.47(5)		
C2			
Cu1-Br1-Cu1 ${ }^{\# 1}$	76.886(11)	$\mathrm{N6}^{\# 2}-\mathrm{Cu} 1-\mathrm{Br} 1$	101.45(5)
$\mathrm{Br} 1-\mathrm{Cu} 1-\mathrm{Br} 1^{\# 1}$	103.116(11)	N6 ${ }^{\# 2}-\mathrm{Cu} 1-\mathrm{Br}^{\# 1}{ }^{\text {1 }}$	96.29(5)
N4-Cu1-Br1 ${ }^{\# 1}$	100.03(5)	C5-N3-C7	128.02(18)
N4-Cu1-Br1	101.74(5)	C10-N5-C12	125.14(18)
N4-Cu1-N6 ${ }^{\# 2}$	147.68(7)		
C3			
$\mathrm{Cu} 2-\mathrm{Br} 1-\mathrm{Cu} 1$	69.56(2)	$\mathrm{Br} 1^{\# 2}-\mathrm{Cu} 2-\mathrm{Cu} 1$	160.160(17)
$\mathrm{Br} 1-\mathrm{Cu} 1-\mathrm{Cu} 2$	54.360(12)	$\mathrm{Br} 2-\mathrm{Cu} 2-\mathrm{Br} 1^{\# 2}$	125.858(15)
N3-Cu1-Br1	117.42(5)	Br2-Cu2-Br1	125.857(15)
N3-Cu1-Cu2	124.30(6)	Br2-Cu2-Cu1 ${ }^{\# 2}$	70.937(13)
N3-Cu1-N6 ${ }^{\# 1}$	133.22(7)	Br2-Cu2-Cu1	70.937(13)
$\mathrm{N6}^{\# 1}-\mathrm{Cu} 1-\mathrm{Br} 1$	107.30(5)	$\mathrm{Cu1}{ }^{\# 2}-\mathrm{Cu} 2-\mathrm{Cu} 1$	141.87(3)
$\mathrm{N} 6{ }^{\# 1}-\mathrm{Cu} 1-\mathrm{Cu} 2$	92.19(6)	C5-N3-Cu1	127.03(15)
$\mathrm{Br}^{+2}{ }^{-} \mathrm{Cu} 2-\mathrm{Br} 1$	108.29(3)	C5-N3-C7	105.13(17)
$\mathrm{Br} 1-\mathrm{Cu} 2-\mathrm{Cu} 1^{\# 2}$	160.161(17)	C7-N3-Cu1	125.91(14)
$\mathrm{Br} 1-\mathrm{Cu} 2-\mathrm{Cu} 1$	56.08(2)	C10-N5-C12	123.8(2)
$\mathrm{Br}^{1{ }^{\# 2}-\mathrm{Cu} 2-\mathrm{Cu} 1^{\# 2}}$	56.08(2)		
C4			
N3 ${ }^{\# 1}$-Cu1-N3	180	C16-N6-C11	133.48(15)
Cl1 ${ }^{\# 2}-\mathrm{Cu} 2-\mathrm{Cl1}$	180	C16-N6-C12	120.26(14)
C5-N4-C6	107.27(12)	C7-N3-Cu1	124.85(11)
C1-N4-C5	119.70(14)	C5-N3-Cu1	128.80(11)
C1-N4-C6	132.88(14)	C5-N3-C7	105.70(13)
C11-N6-C12	106.10(13)	C12-N5-C10	104.59(14)
C5			
Cl1-Cu1-Cl1 ${ }^{\# 1}$	180	C1-N4-C5	118.61(14)
$\mathrm{N}^{\# 1}$-Cu1-Cl1	89.78(4)	C1-N4-C6	134.27(13)
N3 ${ }^{\# 1}$-Cu1-Cl1 ${ }^{\# 1}$	90.22(4)	C6-N4-C5	107.12(12)
N3-Cu1-Cl1 ${ }^{\# 1}$	89.78(4)	C12-N5-C10	104.48(14)
N3-Cu1-Cl1	90.22(4)	C11-N6-C12	106.03(14)
N3 ${ }^{\# 1}$-Cu1-N3	180.00(6)	C16-N6-C11	133.64(15)

$\mathrm{C} 5-\mathrm{N} 3-\mathrm{Cu} 1$	$125.56(10)$	$\mathrm{C} 16-\mathrm{N} 6-\mathrm{C} 12$	$120.33(15)$
$\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 7$	$106.21(13)$	$\mathrm{C} 7-\mathrm{N} 3-\mathrm{Cu} 1$	$128.15(11)$

Symmetry codes:
C1: \#1 = 2-x, 2-y, 2-z; \#2 = x-1, y, z-1, z-1/2; \#3 = -x+2, -y+1, -z+2;
C2: \#1 = 2-x, 1-y, 2-z; \#2 = 1-x, 1-y, 1-z; \#3 = x-1, y, z-1; \#4 = x, y, z-1;
C3: $\# 1=3 / 2-x, 3 / 2-y, 1-z ; \# 2=1-x,+y, 1 / 2-z ; \# 3=-x+1,-y+1,-z+1, \# 4=x-1 / 2, y+1 / 2, z ;$
C4: \#1 = 1-x, -y, 1-z; \#2 = 2-x, 1-y, 2-z; \#3 = -x+1, -y+1, -z+1; \#4 = -x+2, -y+2, -z+1;
C5: $\# 1=-x+1 / 2,-y+3 / 2,-z+1 ; \# 2=x+1 / 2,-y+3 / 2, z-1 / 2 ; \# 3=-x+1,-y+1,-z+1$;

Scheme S1. Proposed mechanism for the intramolecular C-H amination with and without iron salt reported by Zhu and co-workers ${ }^{2}$.

Scheme S2. Proposed mechanism for the intramolecular C-H amination reported by Maes and co-workers ${ }^{3}$.

Figure S1. The simulated (black) and experimental (red) PXRD patterns for complex C1.

Figure S2. X-ray photoelectron spectra (XPS) of complexes C1 (red), C2 (orange),
$\mathbf{C 3}$ (green), C4 (blue) and $\mathbf{C 5}$ (violet) recorded in the Cu 2 p region.

Figure S3. The simulated (black) and experimental (red) PXRD patterns for complex C2.

Figure S4. TGA curves of $\mathbf{C 2}$ (red solid line) and $\mathbf{C 3}$ (blue dot line).
_As synthesized C3

$10 \begin{array}{cccc}20 & 30 & 40 & 50 \\ & \text { 2-Theta(degree) } & & \end{array}$

Figure S5. The simulated (black) and experimental (red) PXRD patterns for complex
C3.

Figure S6. The simulated (black) and experimental (red) PXRD patterns for complex C4.

Figure S7. The simulated (black) and experimental (red) PXRD patterns for complex C5.

Figure S10. IR spectra for complexes C1 (black), C2 (red).

Figure S11. IR spectra for complexes C3 (black), $\mathbf{C 4}$ (red).

Figure S12. IR spectra for complexes C5 (red).

Figure S13. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{L 3}$.

